Analysis and Geometry on Complex Homogeneous Domains

Analysis and Geometry on Complex Homogeneous Domains

Author: Jacques Faraut

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 539

ISBN-13: 1461213665

DOWNLOAD EBOOK

A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts.


Complex Convexity and Analytic Functionals

Complex Convexity and Analytic Functionals

Author: Mats Andersson

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 172

ISBN-13: 3034878710

DOWNLOAD EBOOK

This book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations.


Combinatorial Algebraic Geometry

Combinatorial Algebraic Geometry

Author: Aldo Conca

Publisher: Springer

Published: 2014-05-15

Total Pages: 245

ISBN-13: 3319048708

DOWNLOAD EBOOK

Combinatorics and Algebraic Geometry have enjoyed a fruitful interplay since the nineteenth century. Classical interactions include invariant theory, theta functions and enumerative geometry. The aim of this volume is to introduce recent developments in combinatorial algebraic geometry and to approach algebraic geometry with a view towards applications, such as tensor calculus and algebraic statistics. A common theme is the study of algebraic varieties endowed with a rich combinatorial structure. Relevant techniques include polyhedral geometry, free resolutions, multilinear algebra, projective duality and compactifications.


Number Fields and Function Fields – Two Parallel Worlds

Number Fields and Function Fields – Two Parallel Worlds

Author: Gerard van der Geer

Publisher: Springer Science & Business Media

Published: 2005-09-14

Total Pages: 342

ISBN-13: 9780817643973

DOWNLOAD EBOOK

Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives Aimed at graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections


Introduction to Vertex Operator Algebras and Their Representations

Introduction to Vertex Operator Algebras and Their Representations

Author: James Lepowsky

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 330

ISBN-13: 0817681868

DOWNLOAD EBOOK

* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.


Analysis, Probability, Applications, and Computation

Analysis, Probability, Applications, and Computation

Author: Karl‐Olof Lindahl

Publisher: Springer

Published: 2019-04-29

Total Pages: 540

ISBN-13: 3030044599

DOWNLOAD EBOOK

This book is a collection of short papers from the 11th International ISAAC Congress 2017 in Växjö, Sweden. The papers, written by the best international experts, are devoted to recent results in mathematics with a focus on analysis. The volume provides to both specialists and non-specialists an excellent source of information on the current research in mathematical analysis and its various interdisciplinary applications.


Rigid Analytic Geometry and Its Applications

Rigid Analytic Geometry and Its Applications

Author: Jean Fresnel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 303

ISBN-13: 1461200415

DOWNLOAD EBOOK

Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.


Geometric Analysis and Applications to Quantum Field Theory

Geometric Analysis and Applications to Quantum Field Theory

Author: Peter Bouwknegt

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 213

ISBN-13: 1461200679

DOWNLOAD EBOOK

In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.


Momentum Maps and Hamiltonian Reduction

Momentum Maps and Hamiltonian Reduction

Author: Juan-Pablo Ortega

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 526

ISBN-13: 1475738110

DOWNLOAD EBOOK

* Winner of the Ferran Sunyer i Balaguer Prize in 2000. * Reviews the necessary prerequisites, beginning with an introduction to Lie symmetries on Poisson and symplectic manifolds. * Currently in classroom use in Europe. * Can serve as a resource for graduate courses and seminars in Hamiltonian mechanics and symmetry, symplectic and Poisson geometry, Lie theory, mathematical physics, and as a comprehensive reference resource for researchers.