Analysis and Comparison of Metaheuristics

Analysis and Comparison of Metaheuristics

Author: Erik Cuevas

Publisher: Springer Nature

Published: 2022-11-02

Total Pages: 230

ISBN-13: 3031201051

DOWNLOAD EBOOK

This book presents a comparative perspective of current metaheuristic developments, which have proved to be effective in their application to several complex problems. The study of biological and social entities such as animals, humans, or insects that manifest a cooperative behavior has produced several computational models in metaheuristic methods. Although these schemes emulate very different processes or systems, the rules used to model individual behavior are very similar. Under such conditions, it is not clear to identify which are the advantages or disadvantages of each metaheuristic technique. The book is compiled from a teaching perspective. For this reason, the book is primarily intended for undergraduate and postgraduate students of Science, Electrical Engineering, or Computational Mathematics. It is appropriate for courses such as Artificial Intelligence, Electrical Engineering, Evolutionary Computation. The book is also useful for researchers from the evolutionary and engineering communities. Likewise, engineer practitioners, who are not familiar with metaheuristic computation concepts, will appreciate that the techniques discussed are beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise in engineering areas.


Handbook of Metaheuristics

Handbook of Metaheuristics

Author: Michel Gendreau

Publisher: Springer

Published: 2018-09-20

Total Pages: 611

ISBN-13: 3319910868

DOWNLOAD EBOOK

The third edition of this handbook is designed to provide a broad coverage of the concepts, implementations, and applications in metaheuristics. The book’s chapters serve as stand-alone presentations giving both the necessary underpinnings as well as practical guides for implementation. The nature of metaheuristics invites an analyst to modify basic methods in response to problem characteristics, past experiences, and personal preferences, and the chapters in this handbook are designed to facilitate this process as well. This new edition has been fully revised and features new chapters on swarm intelligence and automated design of metaheuristics from flexible algorithm frameworks. The authors who have contributed to this volume represent leading figures from the metaheuristic community and are responsible for pioneering contributions to the fields they write about. Their collective work has significantly enriched the field of optimization in general and combinatorial optimization in particular.Metaheuristics are solution methods that orchestrate an interaction between local improvement procedures and higher level strategies to create a process capable of escaping from local optima and performing a robust search of a solution space. In addition, many new and exciting developments and extensions have been observed in the last few years. Hybrids of metaheuristics with other optimization techniques, like branch-and-bound, mathematical programming or constraint programming are also increasingly popular. On the front of applications, metaheuristics are now used to find high-quality solutions to an ever-growing number of complex, ill-defined real-world problems, in particular combinatorial ones. This handbook should continue to be a great reference for researchers, graduate students, as well as practitioners interested in metaheuristics.


Essentials of Metaheuristics (Second Edition)

Essentials of Metaheuristics (Second Edition)

Author: Sean Luke

Publisher:

Published: 2012-12-20

Total Pages: 242

ISBN-13: 9781300549628

DOWNLOAD EBOOK

Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.


Nature-Inspired Optimization Algorithms

Nature-Inspired Optimization Algorithms

Author: Xin-She Yang

Publisher: Elsevier

Published: 2014-02-17

Total Pages: 277

ISBN-13: 0124167454

DOWNLOAD EBOOK

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm


Research Anthology on Agile Software, Software Development, and Testing

Research Anthology on Agile Software, Software Development, and Testing

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2021-11-26

Total Pages: 2164

ISBN-13: 1668437031

DOWNLOAD EBOOK

Software development continues to be an ever-evolving field as organizations require new and innovative programs that can be implemented to make processes more efficient, productive, and cost-effective. Agile practices particularly have shown great benefits for improving the effectiveness of software development and its maintenance due to their ability to adapt to change. It is integral to remain up to date with the most emerging tactics and techniques involved in the development of new and innovative software. The Research Anthology on Agile Software, Software Development, and Testing is a comprehensive resource on the emerging trends of software development and testing. This text discusses the newest developments in agile software and its usage spanning multiple industries. Featuring a collection of insights from diverse authors, this research anthology offers international perspectives on agile software. Covering topics such as global software engineering, knowledge management, and product development, this comprehensive resource is valuable to software developers, software engineers, computer engineers, IT directors, students, managers, faculty, researchers, and academicians.


Experimental Algorithms

Experimental Algorithms

Author: Panos M. Pardalos

Publisher: Springer

Published: 2011-04-21

Total Pages: 469

ISBN-13: 364220662X

DOWNLOAD EBOOK

This volume constitutes the refereed proceedings of the 10th International Symposium on Experimental Algorithms, SEA 2011, held in Kolimpari, Chania, Crete, Greece, in May 2011. The 36 revised full papers presented together with 2 invited papers were carefully reviewed and selected from 83 submissions and present current research in the area of design, analysis, and experimental evaluation and engineering of algorithms, as well as in various aspects of computational optimization and its applications.


Recent Advances in Hybrid Metaheuristics for Data Clustering

Recent Advances in Hybrid Metaheuristics for Data Clustering

Author: Sourav De

Publisher: John Wiley & Sons

Published: 2020-06-02

Total Pages: 196

ISBN-13: 1119551609

DOWNLOAD EBOOK

An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.


Metaheuristics for Hard Optimization

Metaheuristics for Hard Optimization

Author: Johann Dréo

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 373

ISBN-13: 3540309667

DOWNLOAD EBOOK

Contains case studies from engineering and operations research Includes commented literature for each chapter


Recent Advances in the Theory and Application of Fitness Landscapes

Recent Advances in the Theory and Application of Fitness Landscapes

Author: Hendrik Richter

Publisher: Springer Science & Business Media

Published: 2013-11-19

Total Pages: 577

ISBN-13: 3642418880

DOWNLOAD EBOOK

This book is concerned with recent advances in fitness landscapes. The concept of fitness landscapes originates from theoretical biology and refers to a framework for analysing and visualizing the relationships between genotypes, phenotypes and fitness. These relationships lay at the centre of attempts to mathematically describe evolutionary processes and evolutionary dynamics. The book addresses recent advances in the understanding of fitness landscapes in evolutionary biology and evolutionary computation. In the volume, experts in the field of fitness landscapes present these findings in an integrated way to make it accessible to a number of audiences: senior undergraduate and graduate students in computer science, theoretical biology, physics, applied mathematics and engineering, but also researcher looking for a reference or/and entry point into using fitness landscapes for analysing algorithms. Also practitioners wanting to employ fitness landscape techniques for evaluating bio- and nature-inspired computing algorithms can find valuable material in the book. For teaching proposes, the book could also be used as a reference handbook.


Music-Inspired Harmony Search Algorithm

Music-Inspired Harmony Search Algorithm

Author: Zong Woo Geem

Publisher: Springer

Published: 2009-02-19

Total Pages: 210

ISBN-13: 3642001858

DOWNLOAD EBOOK

Calculus has been used in solving many scientific and engineering problems. For optimization problems, however, the differential calculus technique sometimes has a drawback when the objective function is step-wise, discontinuous, or multi-modal, or when decision variables are discrete rather than continuous. Thus, researchers have recently turned their interests into metaheuristic algorithms that have been inspired by natural phenomena such as evolution, animal behavior, or metallic annealing. This book especially focuses on a music-inspired metaheuristic algorithm, harmony search. Interestingly, there exists an analogy between music and optimization: each musical instrument corresponds to each decision variable; musical note corresponds to variable value; and harmony corresponds to solution vector. Just like musicians in Jazz improvisation play notes randomly or based on experiences in order to find fantastic harmony, variables in the harmony search algorithm have random values or previously-memorized good values in order to find optimal solution.