This book covers issues involved in improving the present range of systems and technology of optical fibre based telecommunications services operating with analogue-sourced signals.
This book is intended to provide a step-by-step guide to all design aspects and tradeoffs from theory to application for fiber-optics transceiver electronics. Presenting a compendium of information in a structured way, this book enables the engineer to develop a methodical design approach, a deep understanding of specifications parameters and the reasons behind them, as well as their effects and consequences on system performance, which are essential for proper component design. Further, a fundamental understanding of RF, digital circuit design, and linear and nonlinear phenomena is important in order to achieve the desired performance levels. Becoming familiar with solid-state devices and passives used to build optical receivers and transmitters is also important so one can effectively overcome design limitations.
This book highlights the fundamental principles of optical fiber technology required for understanding modern high-capacity lightwave telecom networks. Such networks have become an indispensable part of society with applications ranging from simple web browsing to critical healthcare diagnosis and cloud computing. Since users expect these services to always be available, careful engineering is required in all technologies ranging from component development to network operations. To achieve this understanding, this book first presents a comprehensive treatment of various optical fiber structures and diverse photonic components used in optical fiber networks. Following this discussion are the fundamental design principles of digital and analog optical fiber transmission links. The concluding chapters present the architectures and performance characteristics of optical networks.
This book is intended to provide a step-by-step guide to all design aspects and tradeoffs from theory to application for fiber-optics transceiver electronics. Presenting a compendium of information in a structured way, this book enables the engineer to develop a methodical design approach, a deep understanding of specifications parameters and the reasons behind them, as well as their effects and consequences on system performance, which are essential for proper component design. Further, a fundamental understanding of RF, digital circuit design, and linear and nonlinear phenomena is important.
Optical fibre communication is fast extending the boundaries of research laboratories and attaining the threshold of real-life applicability. The book attempts to provide a thorough understanding of the fundamentals of optical fibre communication. Organized into nine chapters, this book begins with a discussion of planar dielectric waveguide and proceeds to discuss optical fibre and the propagation of light through it. It also covers Erbium Doped Fibre Amplifier (EDFA), semiconductor optical sources and detectors, fibre optic communication systems, and fibre optic measurements. In the Second Edition, lucid presentation of the text has been maintained without compromising on the comprehension of the subject. Two new chapters on “advanced modulation formats for fibre optic communication systems” and “surface plasmon polaritons and photonic crystals” have been included which discuss topics such as fibre optic coupler, coherent optical communication, BER performance of coherent optical communication systems, differential phase modulation schemes with direct detection, surface plasmon polariton and photonic crystal. Besides, a number of chapters have been significantly revised. This book is primarily intended as a text for undergraduate students of Electrical Engineering, Electronics and Communication Engineering, and Telecommunication Engineering. The book would also prove to be of immense benefit to postgraduate students of Physics and those preparing for AMIE and AMIETE exams. Key features • Lucid discussion of concepts, ensuring easy comprehensibility of even advanced topics to undergraduate students. • Numerical problems forming an integral part of the book, making it application-oriented. • Solutions to chapter-end numerical problems provided at the end of the book.
An expert guide to the new and emerging field of broadband circuits for optical fiber communication This exciting publication makes it easy for readers to enter into and deepen their knowledge of the new and emerging field of broadband circuits for optical fiber communication. The author's selection and organization of material have been developed, tested, and refined from his many industry courses and seminars. Five types of broadband circuits are discussed in detail: * Transimpedance amplifiers * Limiting amplifiers * Automatic gain control (AGC) amplifiers * Lasers drivers * Modulator drivers Essential background on optical fiber, photodetectors, lasers, modulators, and receiver theory is presented to help readers understand the system environment in which these broadband circuits operate. For each circuit type, the main specifications and their impact on system performance are explained and illustrated with numerical values. Next, the circuit concepts are discussed and illustrated with practical implementations. A broad range of circuits in MESFET, HFET, BJT, HBT, BiCMOS, and CMOS technologies is covered. Emphasis is on circuits for digital, continuous-mode transmission in the 2.5 to 40 Gb/s range, typically used in SONET, SDH, and Gigabit Ethernet applications. Burst-mode circuits for passive optical networks (PON) and analog circuits for hybrid fiber-coax (HFC) cable-TV applications also are discussed. Learning aids are provided throughout the text to help readers grasp and apply difficult concepts and techniques, including: * Chapter summaries that highlight the key points * Problem-and-answer sections to help readers apply their new knowledge * Research directions that point to exciting new technological breakthroughs on the horizon * Product examples that show the performance of actual broadband circuits * Appendices that cover eye diagrams, differential circuits, S parameters, transistors, and technologies * A bibliography that leads readers to more complete and in-depth treatment of specialized topics This is a superior learning tool for upper-level undergraduates and graduate-level students in circuit design and optical fiber communication. Unlike other texts that concentrate on analog circuits in general or mostly on optics, this text provides balanced coverage of electronic, optic, and system issues. Professionals in the fiber optic industry will find it an excellent reference, incorporating the latest technology and discoveries in the industry.
The third edition of this popular text and reference book presents the fundamental principles for understanding and applying optical fiber technology to sophisticated modern telecommunication systems. Optical-fiber-based telecommunication networks have become a major information-transmission-system, with high capacity links encircling the globe in both terrestrial and undersea installations. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain, such as signal amplification, restoration, routing, and switching. Along with the need to understand the functions of these devices comes the necessity to measure both component and network performance, and to model and stimulate the complex behavior of reliable high-capacity networks.