Since the general recognition of the Archaebacteria, research into the evolution, metabolism, molecular biology and ecological roles of these fastidious anaerobes has proceeded at an ever-increasing pace. All possess a very novel biochemistry and many exploit unique ecological niches. Methanogens, which convert one-and-two carbon compounds into the important atmospheric gas methane, are the largest group among the Archaebacteria. Of all microbial groups, methanogens provide perhaps the best opportunity to study evolution because of their phyologenetic diversity and unique biochemistry. Today, the analysis of methanogens is at a threshold. Molecular-biological studies of these microorganisms are revealing more and more processes unique to this group, and in turn, studies of methanogens are providing new perspectives to the broader fields of biochemistry and molecular biology. This volume is the first book to be published on methanogenesis, and it will provide the reader with a comprehensive view of the field and point to future trends.
Water and waste management covers the design, building and operation of plants for water treatment and supply, sewerage, wastewater treatment and disposal, and solid waste treatment and disposal. Since the last edition in 2002 there has been an increasing importance on the issues reflecting climate change. This is particularly important when the result of this change must be 'managed' and 'controlled' to maintain an amenity such as water supply. This new edition includes many new entries on the topics of stormwater management and flood management, as well as the new EU Directives that cover this field.With over 7000 terms, this dictionary encompasses the most recent terminology on water and waste management. It is a handy reference for consultants, contractors and professional engineers as well as academics and students who need a quick definition to technical terms. - Provides a handy reference for consultants, contractors and professional engineers as well as academics and students who need a quick definition to technical terms - References US, UK and European standards, legislation and spelling providing a global relevance - Offers detailed coverage of the terminology of Stormwater management and flood management not found elsewhere
This book offers insights into the current focus and recent advances in bioremediation and green technology applications for waste minimization and pollution control. Increasing urbanization has an impact on the environment, agriculture and industry, exacerbating the pollution problem and creating an urgent need for sustainable and green eco-friendly remediation technology. Currently, there is heightened interest in environmental research, especially in the area of pollution remediation and waste conversion, and alternative, eco-friendly methods involving better usage of agricultural residues as economically viable substrates for environmental cleanup are still required. The book offers researchers and scholars inspiration, and suggests directions for specific waste management and pollution control. The research presented makes a valuable contribution toward a sustainable and eco-friendly societal environment.
Microbes and their biosynthetic capabilities have been invaluable in finding solutions for several intractable problems mankind has encountered in maintaining the quality of the environment. They have, for example, been used to positive effect in human and animal health, genetic engineering, environmental protection, and municipal and industrial waste treatment. Microorganisms have enabled feasible and cost-effective responses which would have been impossible via straightforward chemical or physical engineering methods. Microbial technologies have of late been applied to a range of environmental problems, with considerable success. This survey of recent scientific progress in usefully applying microbes to both environmental management and biotechnology is informed by acknowledgement of the polluting effects on the world around us of soil erosion, the unwanted migration of sediments, chemical fertilizers and pesticides, and the improper treatment of human and animal wastes. These harmful phenomena have resulted in serious environmental and social problems around the world, problems which require us to look for solutions elsewhere than in established physical and chemical technologies. Often the answer lies in hybrid applications in which microbial methods are combined with physical and chemical ones. When we remember that these highly effective microorganisms, cultured for a variety of applications, are but a tiny fraction of those to be found in the world around us, we realize the vastness of the untapped and beneficial potential of microorganisms. At present, comprehending the diversity of hitherto uncultured microbes involves the application of metagenomics, with several novel microbial species having been discovered using culture-independent approaches. Edited by recognized leaders in the field, this penetrating assessment of our progress to date in deploying microorganisms to the advantage of environmental management and biotechnology will be widely welcomed.
There is need in environmental research for a book on fresh waters including rivers and lakes. Compared with other books on the topic, this book has a unique outline in that it follows pollution from sources to impact. Included in the text is the treatment of various tracers, ranging from pathogens to stable isotopes of elements and providing a comprehensive discussion which is lacking in many other books on pollution control of natural waters. Geophysical processes are discussed emphasizing mixing of water, interaction between water and the atmosphere, and sedimentation processes. Important geochemistry processes occurring in natural waters are described as are the processes specific to nutrients, organic pollutants, metals, and pathogens in subsequent chapters. Each of these chapters includes an introduction on the selected groups, followed by the physicochemical properties which are the most relevant to their behavior in natural waters, and the theories and models to describe their speciation, transport and transformation. The book also includes the most up to date information including a discussion on emerging pollutants such as brominated and phosphate flame retardants, perflurochemicals, and pharmaceutical and personal care products. Due to its importance an ecotoxicology chapter has been included featuring molecular biological methods, nanoparticles, and comparison of the basis of biotic ligand model with the Weibull dose-response model. Finally, the last chapter briefly summarizes the regulations on ambient water quality.
The IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes was created with the aim to produce a generic model and common platform for dynamic simulations of a variety of anaerobic processes. This book presents the outcome of this undertaking and is the result of four years collaborative work by a number of international experts from various fields of anaerobic process technology. The purpose of this approach is to provide a unified basis for anaerobic digestion modelling. It is hoped this will promote increased application of modelling and simulation as a tool for research, design, operation and optimisation of anaerobic processes worldwide. This model was developed on the basis of the extensive but often disparate work in modelling and simulation of anaerobic digestion systems over the last twenty years. In developing ADM1, the Task Group have tried to establish common nomenclature, units and model structure, consistent with existing anaerobic modelling literature and the popular activated sludge models (See Activated Sludge Models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, 2000, ISBN: 1900222248). As such, it is intended to promote widespread application of simulation from domestic (wastewater and sludge) treatment systems to specialised industrial applications. Outputs from the model include common process variables such gas flow and composition, pH, separate organic acids, and ammonium. The structure has been devised to encourage specific extensions or modifications where required, but still maintain a common platform. During development the model has been successfully tested on a range of systems from full-scale waste sludge digestion to laboratory-scale thermophilic high-rate UASB reactors. The model structure is presented in a readily applicable matrix format for implementation in many available differential equation solvers. It is expected that the model will be available as part of commercial wastewater simulation packages. ADM1 will be a valuable information source for practising engineers working in water treatment (both domestic and industrial) as well as academic researchers and students in Environmental Engineering and Science, Civil and Sanitary Engineering, Biotechnology, and Chemical and Process Engineering departments. Contents Introduction Nomenclature, State Variables and Expressions Biochemical Processes Physicochemical Processes Model Implementation in a Single Stage CSTR Suggested Biochemical Parameter Values, Sensitivity and Estimation Conclusions References Appendix A: Review of Parameters Appendix B: Supplementary Matrix Information Appendix C: Integration with the ASM Appendix D: Estimating Stoichiometric Coefficients for Fermentation Scientific & Technical Report No.13
Following on from the successful first edition of Waste Treatment & Disposal, this second edition has been completely updated, and provides comprehensive coverage of waste process engineering and disposal methodologies. Concentrating on the range of technologies available for household and commercial waste, it also presents readers with relevant legislative background material as boxed features. NEW to this edition: Increased coverage of re-use and recycling Updating of the usage of different waste treatment technologies Increased coverage of new and emerging technologies for waste treatment and disposal A broader global perspective with a focus on comparative international material on waste treatment uptake and waste management policies
This book presents the recent research on the separation, purification and downstream utilization of CO2 and other flue gases. Chapters include a detailed discussion on the purification and further conversion of CO2 to commodity chemicals and fuels. With contributions from renowned researchers in the field, the book focuses on the current challenges of catalytic high-pressure chemical conversion and biochemical conversion into high-value products. This book is of interest to researchers, professionals, and students working on carbon capture and sequestration, and is a valuable resource for policy makers and government agents working on guidelines and frameworks for carbon capture and reuse.