An Introduction to the Theory of Linear Spaces

An Introduction to the Theory of Linear Spaces

Author: Georgi E. Shilov

Publisher: Courier Corporation

Published: 2012-12-03

Total Pages: 323

ISBN-13: 0486139433

DOWNLOAD EBOOK

Introductory treatment offers a clear exposition of algebra, geometry, and analysis as parts of an integrated whole rather than separate subjects. Numerous examples illustrate many different fields, and problems include hints or answers. 1961 edition.


Linear Algebra

Linear Algebra

Author: Alan Tucker

Publisher: Macmillan College

Published: 1993

Total Pages: 472

ISBN-13:

DOWNLOAD EBOOK

Covers the fundamental role of linear algebra with both pure and applied mathematics as well as client disciplines such as engineering, the physical sciences and economics. This text examines the interrelationships amongst theory, computation and applications.


Linear Operators in Hilbert Spaces

Linear Operators in Hilbert Spaces

Author: Joachim Weidmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 1461260272

DOWNLOAD EBOOK

This English edition is almost identical to the German original Lineare Operatoren in Hilbertriiumen, published by B. G. Teubner, Stuttgart in 1976. A few proofs have been simplified, some additional exercises have been included, and a small number of new results has been added (e.g., Theorem 11.11 and Theorem 11.23). In addition a great number of minor errors has been corrected. Frankfurt, January 1980 J. Weidmann vii Preface to the German edition The purpose of this book is to give an introduction to the theory of linear operators on Hilbert spaces and then to proceed to the interesting applica tions of differential operators to mathematical physics. Besides the usual introductory courses common to both mathematicians and physicists, only a fundamental knowledge of complex analysis and of ordinary differential equations is assumed. The most important results of Lebesgue integration theory, to the extent that they are used in this book, are compiled with complete proofs in Appendix A. I hope therefore that students from the fourth semester on will be able to read this book without major difficulty. However, it might also be of some interest and use to the teaching and research mathematician or physicist, since among other things it makes easily accessible several new results of the spectral theory of differential operators.


Introduction to Spectral Theory in Hilbert Space

Introduction to Spectral Theory in Hilbert Space

Author: Gilbert Helmberg

Publisher: Elsevier

Published: 2014-11-28

Total Pages: 362

ISBN-13: 1483164179

DOWNLOAD EBOOK

North-Holland Series in Applied Mathematics and Mechanics, Volume 6: Introduction to Spectral Theory in Hilbert Space focuses on the mechanics, principles, and approaches involved in spectral theory in Hilbert space. The publication first elaborates on the concept and specific geometry of Hilbert space and bounded linear operators. Discussions focus on projection and adjoint operators, bilinear forms, bounded linear mappings, isomorphisms, orthogonal subspaces, base, subspaces, finite dimensional Euclidean space, and normed linear spaces. The text then takes a look at the general theory of linear operators and spectral analysis of compact linear operators, including spectral decomposition of a compact selfadjoint operator, weakly convergent sequences, spectrum of a compact linear operator, and eigenvalues of a linear operator. The manuscript ponders on the spectral analysis of bounded linear operators and unbounded selfadjoint operators. Topics include spectral decomposition of an unbounded selfadjoint operator and bounded normal operator, functions of a unitary operator, step functions of a bounded selfadjoint operator, polynomials in a bounded operator, and order relation for bounded selfadjoint operators. The publication is a valuable source of data for mathematicians and researchers interested in spectral theory in Hilbert space.


Introduction to the Analysis of Normed Linear Spaces

Introduction to the Analysis of Normed Linear Spaces

Author: J. R. Giles

Publisher: Cambridge University Press

Published: 2000-03-13

Total Pages: 298

ISBN-13: 9780521653756

DOWNLOAD EBOOK

This is a basic course in functional analysis for senior undergraduate and beginning postgraduate students. The reader need only be familiarity with elementary real and complex analysis, linear algebra and have studied a course in the analysis of metric spaces; knowledge of integration theory or general topology is not required. The text concerns the structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. The implications of the general theory are illustrated with a great variety of example spaces.


Module Theory

Module Theory

Author: Thomas Scott Blyth

Publisher:

Published: 1990

Total Pages: 376

ISBN-13:

DOWNLOAD EBOOK

This textbook provides a self-contained course on the basic properties of modules and their importance in the theory of linear algebra. The first 11 chapters introduce the central results and applications of the theory of modules. Subsequent chapters deal with advanced linear algebra, including multilinear and tensor algebra, and explore such topics as the exterior product approach to the determinants of matrices, a module-theoretic approach to the structure of finitely generated Abelian groups, canonical forms, and normal transformations. Suitable for undergraduate courses, the text now includes a proof of the celebrated Wedderburn-Artin theorem which determines the structure of simple Artinian rings.


Optimization by Vector Space Methods

Optimization by Vector Space Methods

Author: David G. Luenberger

Publisher: John Wiley & Sons

Published: 1997-01-23

Total Pages: 348

ISBN-13: 9780471181170

DOWNLOAD EBOOK

Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.


Groups, Matrices, and Vector Spaces

Groups, Matrices, and Vector Spaces

Author: James B. Carrell

Publisher: Springer

Published: 2017-09-02

Total Pages: 415

ISBN-13: 038779428X

DOWNLOAD EBOOK

This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material. Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.