An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs

An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs

Author: Mariano Giaquinta

Publisher: Springer Science & Business Media

Published: 2013-07-30

Total Pages: 373

ISBN-13: 8876424431

DOWNLOAD EBOOK

This volume deals with the regularity theory for elliptic systems. We may find the origin of such a theory in two of the problems posed by David Hilbert in his celebrated lecture delivered during the International Congress of Mathematicians in 1900 in Paris: 19th problem: Are the solutions to regular problems in the Calculus of Variations always necessarily analytic? 20th problem: does any variational problem have a solution, provided that certain assumptions regarding the given boundary conditions are satisfied, and provided that the notion of a solution is suitably extended? During the last century these two problems have generated a great deal of work, usually referred to as regularity theory, which makes this topic quite relevant in many fields and still very active for research. However, the purpose of this volume, addressed mainly to students, is much more limited. We aim to illustrate only some of the basic ideas and techniques introduced in this context, confining ourselves to important but simple situations and refraining from completeness. In fact some relevant topics are omitted. Topics include: harmonic functions, direct methods, Hilbert space methods and Sobolev spaces, energy estimates, Schauder and L^p-theory both with and without potential theory, including the Calderon-Zygmund theorem, Harnack's and De Giorgi-Moser-Nash theorems in the scalar case and partial regularity theorems in the vector valued case; energy minimizing harmonic maps and minimal graphs in codimension 1 and greater than 1. In this second deeply revised edition we also included the regularity of 2-dimensional weakly harmonic maps, the partial regularity of stationary harmonic maps, and their connections with the case p=1 of the L^p theory, including the celebrated results of Wente and of Coifman-Lions-Meyer-Semmes.


Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations

Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations

Author: Giovanni Bellettini

Publisher: Springer

Published: 2014-05-13

Total Pages: 336

ISBN-13: 8876424296

DOWNLOAD EBOOK

The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.


Interpolation Theory

Interpolation Theory

Author: Alessandra Lunardi

Publisher: Springer

Published: 2018-05-05

Total Pages: 208

ISBN-13: 8876426388

DOWNLOAD EBOOK

This book is the third edition of the 1999 lecture notes of the courses on interpolation theory that the author delivered at the Scuola Normale in 1998 and 1999. In the mathematical literature there are many good books on the subject, but none of them is very elementary, and in many cases the basic principles are hidden below great generality. In this book the principles of interpolation theory are illustrated aiming at simplification rather than at generality. The abstract theory is reduced as far as possible, and many examples and applications are given, especially to operator theory and to regularity in partial differential equations. Moreover the treatment is self-contained, the only prerequisite being the knowledge of basic functional analysis.


Introduction to Stochastic Analysis and Malliavin Calculus

Introduction to Stochastic Analysis and Malliavin Calculus

Author: Giuseppe Da Prato

Publisher: Springer

Published: 2014-07-01

Total Pages: 286

ISBN-13: 8876424997

DOWNLOAD EBOOK

This volume presents an introductory course on differential stochastic equations and Malliavin calculus. The material of the book has grown out of a series of courses delivered at the Scuola Normale Superiore di Pisa (and also at the Trento and Funchal Universities) and has been refined over several years of teaching experience in the subject. The lectures are addressed to a reader who is familiar with basic notions of measure theory and functional analysis. The first part is devoted to the Gaussian measure in a separable Hilbert space, the Malliavin derivative, the construction of the Brownian motion and Itô's formula. The second part deals with differential stochastic equations and their connection with parabolic problems. The third part provides an introduction to the Malliavin calculus. Several applications are given, notably the Feynman-Kac, Girsanov and Clark-Ocone formulae, the Krylov-Bogoliubov and Von Neumann theorems. In this third edition several small improvements are added and a new section devoted to the differentiability of the Feynman-Kac semigroup is introduced. A considerable number of corrections and improvements have been made.


Introductory Notes on Valuation Rings and Function Fields in One Variable

Introductory Notes on Valuation Rings and Function Fields in One Variable

Author: Renata Scognamillo

Publisher: Springer

Published: 2014-07-01

Total Pages: 125

ISBN-13: 8876425012

DOWNLOAD EBOOK

The book deals with the (elementary and introductory) theory of valuation rings. As explained in the introduction, this represents a useful and important viewpoint in algebraic geometry, especially concerning the theory of algebraic curves and their function fields. The correspondences of this with other viewpoints (e.g. of geometrical or topological nature) are often indicated, also to provide motivations and intuition for many results. Links with arithmetic are also often indicated. There are three appendices, concerning Hilbert’s Nullstellensatz (for which several proofs are provided), Puiseux series and Dedekind domains. There are also several exercises, often accompanied by hints, which sometimes develop further results not included in full for brevity reasons.


A First Course in Fractional Sobolev Spaces

A First Course in Fractional Sobolev Spaces

Author: Giovanni Leoni

Publisher: American Mathematical Society

Published: 2023-03-17

Total Pages: 605

ISBN-13: 1470472538

DOWNLOAD EBOOK

This book provides a gentle introduction to fractional Sobolev spaces which play a central role in the calculus of variations, partial differential equations, and harmonic analysis. The first part deals with fractional Sobolev spaces of one variable. It covers the definition, standard properties, extensions, embeddings, Hardy inequalities, and interpolation inequalities. The second part deals with fractional Sobolev spaces of several variables. The author studies completeness, density, homogeneous fractional Sobolev spaces, embeddings, necessary and sufficient conditions for extensions, Gagliardo-Nirenberg type interpolation inequalities, and trace theory. The third part explores some applications: interior regularity for the Poisson problem with the right-hand side in a fractional Sobolev space and some basic properties of the fractional Laplacian. The first part of the book is accessible to advanced undergraduates with a strong background in integration theory; the second part, to graduate students having familiarity with measure and integration and some functional analysis. Basic knowledge of Sobolev spaces would help, but is not necessary. The book can also serve as a reference for mathematicians working in the calculus of variations and partial differential equations as well as for researchers in other disciplines with a solid mathematics background. It contains several exercises and is self-contained.


Transcriptome Analysis

Transcriptome Analysis

Author: Alessandro Cellerino

Publisher: Springer

Published: 2018-06-14

Total Pages: 196

ISBN-13: 8876426426

DOWNLOAD EBOOK

The goal of this book is to be an accessible guide for undergraduate and graduate students to the new field of data-driven biology. Next-generation sequencing technologies have put genome-scale analysis of gene expression into the standard toolbox of experimental biologists. Yet, biological interpretation of high-dimensional data is made difficult by the lack of a common language between experimental and data scientists. By combining theory with practical examples of how specific tools were used to obtain novel insights in biology, particularly in the neurosciences, the book intends to teach students how to design, analyse, and extract biological knowledge from transcriptome sequencing experiments. Undergraduate and graduate students in biomedical and quantitative sciences will benefit from this text as well as academics untrained in the subject.


Lecture Notes on Diophantine Analysis

Lecture Notes on Diophantine Analysis

Author: Umberto Zannier

Publisher: Springer

Published: 2015-05-05

Total Pages: 248

ISBN-13: 8876425179

DOWNLOAD EBOOK

These lecture notes originate from a course delivered at the Scuola Normale in Pisa in 2006. Generally speaking, the prerequisites do not go beyond basic mathematical material and are accessible to many undergraduates. The contents mainly concern diophantine problems on affine curves, in practice describing the integer solutions of equations in two variables. This case historically suggested some major ideas for more general problems. Starting with linear and quadratic equations, the important connections with Diophantine Approximation are presented and Thue's celebrated results are proved in full detail. In later chapters more modern issues on heights of algebraic points are dealt with, and applied to a sharp quantitative treatment of the unit equation. The book also contains several supplements, hinted exercises and an appendix on recent work on heights.


Harmonic Analysis and Applications

Harmonic Analysis and Applications

Author: Carlos E. Kenig

Publisher: American Mathematical Soc.

Published: 2020-12-14

Total Pages: 345

ISBN-13: 1470461277

DOWNLOAD EBOOK

The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.