An Introduction to the Mathematics of Finance: A Deterministic Approach, Second edition, offers a highly illustrated introduction to mathematical finance, with a special emphasis on interest rates. This revision of the McCutcheon-Scott classic follows the core subjects covered by the first professional exam required of UK actuaries, the CT1 exam. It realigns the table of contents with the CT1 exam and includes sample questions from past exams of both The Actuarial Profession and the CFA Institute. With a wealth of solved problems and interesting applications, An Introduction to the Mathematics of Finance stands alone in its ability to address the needs of its primary target audience, the actuarial student. - Closely follows the syllabus for the CT1 exam of The Institute and Faculty of Actuaries - Features new content and more examples - Online supplements available: http://booksite.elsevier.com/9780080982403/ - Includes past exam questions from The Institute and Faculty of Actuaries and the CFA Institute
This textbook aims to fill the gap between those that offer a theoretical treatment without many applications and those that present and apply formulas without appropriately deriving them. The balance achieved will give readers a fundamental understanding of key financial ideas and tools that form the basis for building realistic models, including those that may become proprietary. Numerous carefully chosen examples and exercises reinforce the student’s conceptual understanding and facility with applications. The exercises are divided into conceptual, application-based, and theoretical problems, which probe the material deeper. The book is aimed toward advanced undergraduates and first-year graduate students who are new to finance or want a more rigorous treatment of the mathematical models used within. While no background in finance is assumed, prerequisite math courses include multivariable calculus, probability, and linear algebra. The authors introduce additional mathematical tools as needed. The entire textbook is appropriate for a single year-long course on introductory mathematical finance. The self-contained design of the text allows for instructor flexibility in topics courses and those focusing on financial derivatives. Moreover, the text is useful for mathematicians, physicists, and engineers who want to learn finance via an approach that builds their financial intuition and is explicit about model building, as well as business school students who want a treatment of finance that is deeper but not overly theoretical.
An elementary introduction to probability and mathematical finance including a chapter on the Capital Asset Pricing Model (CAPM), a topic that is very popular among practitioners and economists. Dr. Roman has authored 32 books, including a number of books on mathematics, such as Coding and Information Theory, Advanced Linear Algebra, and Field Theory, published by Springer-Verlag.
This textbook contains the fundamentals for an undergraduate course in mathematical finance aimed primarily at students of mathematics. Assuming only a basic knowledge of probability and calculus, the material is presented in a mathematically rigorous and complete way. The book covers the time value of money, including the time structure of interest rates, bonds and stock valuation; derivative securities (futures, options), modelling in discrete time, pricing and hedging, and many other core topics. With numerous examples, problems and exercises, this book is ideally suited for independent study.
The modern subject of mathematical finance has undergone considerable development, both in theory and practice, since the seminal work of Black and Scholes appeared a third of a century ago. This book is intended as an introduction to some elements of the theory that will enable students and researchers to go on to read more advanced texts and research papers. The book begins with the development of the basic ideas of hedging and pricing of European and American derivatives in the discrete (i.e., discrete time and discrete state) setting of binomial tree models. Then a general discrete finite market model is introduced, and the fundamental theorems of asset pricing are proved in this setting. Tools from probability such as conditional expectation, filtration, (super)martingale, equivalent martingale measure, and martingale representation are all used first in this simple discrete framework. This provides a bridge to the continuous (time and state) setting, which requires the additional concepts of Brownian motion and stochastic calculus. The simplest model in the continuous setting is the famous Black-Scholes model, for which pricing and hedging of European and American derivatives are developed. The book concludes with a description of the fundamental theorems for a continuous market model that generalizes the simple Black-Scholes model in several directions.
This textbook on the basics of option pricing is accessible to readers with limited mathematical training. It is for both professional traders and undergraduates studying the basics of finance. Assuming no prior knowledge of probability, Sheldon M. Ross offers clear, simple explanations of arbitrage, the Black-Scholes option pricing formula, and other topics such as utility functions, optimal portfolio selections, and the capital assets pricing model. Among the many new features of this third edition are new chapters on Brownian motion and geometric Brownian motion, stochastic order relations and stochastic dynamic programming, along with expanded sets of exercises and references for all the chapters.
A step-by-step explanation of the mathematical models used to price derivatives. For this second edition, Salih Neftci has expanded one chapter, added six new ones, and inserted chapter-concluding exercises. He does not assume that the reader has a thorough mathematical background. His explanations of financial calculus seek to be simple and perceptive.
A user-friendly presentation of the essential concepts and tools for calculating real costs and profits in personal finance Understanding the Mathematics of Personal Finance explains how mathematics, a simple calculator, and basic computer spreadsheets can be used to break down and understand even the most complex loan structures. In an easy-to-follow style, the book clearly explains the workings of basic financial calculations, captures the concepts behind loans and interest in a step-by-step manner, and details how these steps can be implemented for practical purposes. Rather than simply providing investment and borrowing strategies, the author successfully equips readers with the skills needed to make accurate and effective decisions in all aspects of personal finance ventures, including mortgages, annuities, life insurance, and credit card debt. The book begins with a primer on mathematics, covering the basics of arithmetic operations and notations, and proceeds to explore the concepts of interest, simple interest, and compound interest. Subsequent chapters illustrate the application of these concepts to common types of personal finance exchanges, including: Loan amortization and savings Mortgages, reverse mortgages, and viatical settlements Prepayment penalties Credit cards The book provides readers with the tools needed to calculate real costs and profits using various financial instruments. Mathematically inclined readers will enjoy the inclusion of mathematical derivations, but these sections are visually distinct from the text and can be skipped without the loss of content or complete understanding of the material. In addition, references to online calculators and instructions for building the calculations involved in a spreadsheet are provided. Furthermore, a related Web site features additional problem sets, the spreadsheet calculators that are referenced and used throughout the book, and links to various other financial calculators. Understanding the Mathematics of Personal Finance is an excellent book for finance courses at the undergraduate level. It is also an essential reference for individuals who are interested in learning how to make effective financial decisions in their everyday lives.
Introduction to Financial Mathematics: Option Valuation, Second Edition is a well-rounded primer to the mathematics and models used in the valuation of financial derivatives. The book consists of fifteen chapters, the first ten of which develop option valuation techniques in discrete time, the last five describing the theory in continuous time. The first half of the textbook develops basic finance and probability. The author then treats the binomial model as the primary example of discrete-time option valuation. The final part of the textbook examines the Black-Scholes model. The book is written to provide a straightforward account of the principles of option pricing and examines these principles in detail using standard discrete and stochastic calculus models. Additionally, the second edition has new exercises and examples, and includes many tables and graphs generated by over 30 MS Excel VBA modules available on the author’s webpage https://home.gwu.edu/~hdj/.
The purpose of this book is to provide a rigorous yet accessible introduction to the modern financial theory of security markets. The main subjects are derivatives and portfolio management. The book is intended to be used as a text by advanced undergraduates and beginning graduate students. It is also likely to be useful to practicing financial engineers, portfolio manager, and actuaries who wish to acquire a fundamental understanding of financial theory. The book makes heavy use of mathematics, but not at an advanced level. Various mathematical concepts are developed as needed, and computational examples are emphasized.