An Introduction to the Electron Theory of Solids

An Introduction to the Electron Theory of Solids

Author: John Stringer

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 257

ISBN-13: 148313671X

DOWNLOAD EBOOK

An Introduction to the Electron Theory of Solids introduces the reader to the electron theory of solids. Topics covered range from the breakdown of classical theory to atomic spectra and the old quantum theory, as well as the uncertainty principle of Heisenberg and the foundations of quantum mechanics. Some problems in wave mechanics and a wave-mechanical treatment of the simple harmonic oscillator and the hydrogen atom are also presented. Comprised of 12 chapters, this book begins with an introduction to Isaac Newton's theory of classical mechanics and how the scientists after him discounted his ideas. The discussion then turns to the spectrum of atomic hydrogen and the old quantum theory; Heisenberg's uncertainty principle and the consequences of wave-particle duality; the foundations of quantum mechanics; and assemblies of atoms. Atoms in motion and statistical mechanics are also considered, along with simple models of metals and the band theory of solids. The final chapter presents some results of band theory, with particular reference to thermal ionization of impurity atoms and conductivity of metals. This monograph is primarily intended for students of any discipline.


Introduction to the Electron Theory of Metals

Introduction to the Electron Theory of Metals

Author: Uichiro Mizutani

Publisher: Cambridge University Press

Published: 2001-06-14

Total Pages: 610

ISBN-13: 9780521587099

DOWNLOAD EBOOK

Electron theory of metals textbook for advanced undergraduate students of condensed-matter physics and related disciplines.


Introduction to the Physics of Electrons in Solids

Introduction to the Physics of Electrons in Solids

Author: Henri Alloul

Publisher: Springer Science & Business Media

Published: 2010-12-09

Total Pages: 622

ISBN-13: 364213565X

DOWNLOAD EBOOK

This textbook sets out to enable readers to understand fundamental aspects underlying quantum macroscopic phenomena in solids, primarily through the modern experimental techniques and results. The classic independent-electrons approach for describing the electronic structure in terms of energy bands helps explain the occurrence of metals, insulators and semiconductors. It is underlined that superconductivity and magnetism can only be understood by taking into account the interactions between electrons. The text recounts the experimental observations that have revealed the main properties of the superconductors and were essential to track its physical origin. While fundamental concepts are underlined, those which are required to describe the high technology applications, present or future, are emphasized as well. Problem sets involve experimental approaches and tools which support a practical understanding of the materials and their behaviour.