An Introduction to Semiclassical and Microlocal Analysis

An Introduction to Semiclassical and Microlocal Analysis

Author: André Bach

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 193

ISBN-13: 1475744951

DOWNLOAD EBOOK

This book presents the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics in a pedagogical, way and is mainly addressed to non-specialists in the subject. It is based on lectures taught by the author over several years, and includes many exercises providing outlines of useful applications of the semi-classical theory.


Semiclassical Analysis

Semiclassical Analysis

Author: Maciej Zworski

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 448

ISBN-13: 0821883208

DOWNLOAD EBOOK

"...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.


Microlocal Analysis and Precise Spectral Asymptotics

Microlocal Analysis and Precise Spectral Asymptotics

Author: Victor Ivrii

Publisher: Springer Science & Business Media

Published: 1998-05-20

Total Pages: 756

ISBN-13: 9783540627807

DOWNLOAD EBOOK

This long awaited book is devoted to the methods of microlocal semiclassical analysis in application to spectral asymptotics with accurate remainder estimates. The very powerful machinery of local and microlocal semiclassical spectral asymptotics is developed as well as methods in combining these asymptotics with spectral estimates. The rescaling technique should be mentioned as an easy as to use and very powerful tool. Many theorems, considered before as independent and difficult, now are just special cases of easy corollaries of the theorems proved in the book. Most of the results and almost all the proofs are as yet unpublished


Microlocal Analysis for Differential Operators

Microlocal Analysis for Differential Operators

Author: Alain Grigis

Publisher: Cambridge University Press

Published: 1994-03-03

Total Pages: 164

ISBN-13: 9780521449861

DOWNLOAD EBOOK

This book corresponds to a graduate course given many times by the authors, and should prove to be useful to mathematicians and theoretical physicists.


Singularities of integrals

Singularities of integrals

Author: Frédéric Pham

Publisher: Springer Science & Business Media

Published: 2011-04-22

Total Pages: 218

ISBN-13: 0857296035

DOWNLOAD EBOOK

Bringing together two fundamental texts from Frédéric Pham’s research on singular integrals, the first part of this book focuses on topological and geometrical aspects while the second explains the analytic approach. Using notions developed by J. Leray in the calculus of residues in several variables and R. Thom’s isotopy theorems, Frédéric Pham’s foundational study of the singularities of integrals lies at the interface between analysis and algebraic geometry, culminating in the Picard-Lefschetz formulae. These mathematical structures, enriched by the work of Nilsson, are then approached using methods from the theory of differential equations and generalized from the point of view of hyperfunction theory and microlocal analysis. Providing a ‘must-have’ introduction to the singularities of integrals, a number of supplementary references also offer a convenient guide to the subjects covered. This book will appeal to both mathematicians and physicists with an interest in the area of singularities of integrals. Frédéric Pham, now retired, was Professor at the University of Nice. He has published several educational and research texts. His recent work concerns semi-classical analysis and resurgent functions.


Mathematical Theory of Scattering Resonances

Mathematical Theory of Scattering Resonances

Author: Semyon Dyatlov

Publisher: American Mathematical Soc.

Published: 2019-09-10

Total Pages: 649

ISBN-13: 147044366X

DOWNLOAD EBOOK

Scattering resonances generalize bound states/eigenvalues for systems in which energy can scatter to infinity. A typical resonance has a rate of oscillation (just as a bound state does) and a rate of decay. Although the notion is intrinsically dynamical, an elegant mathematical formulation comes from considering meromorphic continuations of Green's functions. The poles of these meromorphic continuations capture physical information by identifying the rate of oscillation with the real part of a pole and the rate of decay with its imaginary part. An example from mathematics is given by the zeros of the Riemann zeta function: they are, essentially, the resonances of the Laplacian on the modular surface. The Riemann hypothesis then states that the decay rates for the modular surface are all either or . An example from physics is given by quasi-normal modes of black holes which appear in long-time asymptotics of gravitational waves. This book concentrates mostly on the simplest case of scattering by compactly supported potentials but provides pointers to modern literature where more general cases are studied. It also presents a recent approach to the study of resonances on asymptotically hyperbolic manifolds. The last two chapters are devoted to semiclassical methods in the study of resonances.


Microlocal Analysis and Precise Spectral Asymptotics

Microlocal Analysis and Precise Spectral Asymptotics

Author: Victor Ivrii

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 736

ISBN-13: 3662124963

DOWNLOAD EBOOK

The problem of spectral asymptotics, in particular the problem of the asymptotic dis tribution of eigenvalues, is one of the central problems in the spectral theory of partial differential operators; moreover, it is very important for the general theory of partial differential operators. I started working in this domain in 1979 after R. Seeley found a remainder estimate of the same order as the then hypothetical second term for the Laplacian in domains with boundary, and M. Shubin and B. M. Levitan suggested that I should try to prove Weyl's conjecture. During the past fifteen years I have not left the topic, although I had such intentions in 1985 when the methods I invented seemed to fai! to provide furt her progress and only a couple of not very exciting problems remained to be solved. However, at that time I made the step toward local semiclassical spectral asymptotics and rescaling, and new horizons opened.