An Introduction to Rings and Modules

An Introduction to Rings and Modules

Author: A. J. Berrick

Publisher: Cambridge University Press

Published: 2000-05

Total Pages: 286

ISBN-13: 9780521632744

DOWNLOAD EBOOK

This is a concise 2000 introduction at graduate level to ring theory, module theory and number theory.


Ring and Module Theory

Ring and Module Theory

Author: Toma Albu

Publisher: Springer Science & Business Media

Published: 2011-02-04

Total Pages: 204

ISBN-13: 3034600070

DOWNLOAD EBOOK

This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.


Rings and Their Modules

Rings and Their Modules

Author: Paul E. Bland

Publisher: Walter de Gruyter

Published: 2011

Total Pages: 467

ISBN-13: 3110250225

DOWNLOAD EBOOK

This book is an introduction to the theory of rings and modules that goes beyond what one normally obtains in a graduate course in abstract algebra. In addition to the presentation of standard topics in ring and module theory, it also covers category theory, homological algebra and even more specialized topics like injective envelopes and proj


Exercises in Modules and Rings

Exercises in Modules and Rings

Author: T.Y. Lam

Publisher: Springer Science & Business Media

Published: 2009-12-08

Total Pages: 427

ISBN-13: 0387488995

DOWNLOAD EBOOK

This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.


Introduction to Ring Theory

Introduction to Ring Theory

Author: Paul M. Cohn

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 234

ISBN-13: 1447104757

DOWNLOAD EBOOK

A clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product, Tensor product and rings of fractions, followed by a description of free rings. Readers are assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions.


Lectures on Modules and Rings

Lectures on Modules and Rings

Author: Tsit-Yuen Lam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 577

ISBN-13: 1461205255

DOWNLOAD EBOOK

This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.


Introductory Lectures on Rings and Modules

Introductory Lectures on Rings and Modules

Author: John A. Beachy

Publisher: Cambridge University Press

Published: 1999-04-22

Total Pages: 252

ISBN-13: 9780521644075

DOWNLOAD EBOOK

A first-year graduate text or reference for advanced undergraduates on noncommutative aspects of rings and modules.


Foundations of Module and Ring Theory

Foundations of Module and Ring Theory

Author: Robert Wisbauer

Publisher: Routledge

Published: 2018-05-11

Total Pages: 622

ISBN-13: 1351447343

DOWNLOAD EBOOK

This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.


Module Theory

Module Theory

Author: Thomas Scott Blyth

Publisher:

Published: 1990

Total Pages: 376

ISBN-13:

DOWNLOAD EBOOK

This textbook provides a self-contained course on the basic properties of modules and their importance in the theory of linear algebra. The first 11 chapters introduce the central results and applications of the theory of modules. Subsequent chapters deal with advanced linear algebra, including multilinear and tensor algebra, and explore such topics as the exterior product approach to the determinants of matrices, a module-theoretic approach to the structure of finitely generated Abelian groups, canonical forms, and normal transformations. Suitable for undergraduate courses, the text now includes a proof of the celebrated Wedderburn-Artin theorem which determines the structure of simple Artinian rings.