An Introduction to Nuclear Materials

An Introduction to Nuclear Materials

Author: K. Linga Murty

Publisher: John Wiley & Sons

Published: 2013-07-26

Total Pages: 401

ISBN-13: 3527677089

DOWNLOAD EBOOK

Covering both fundamental and advanced aspects in an accessible way, this textbook begins with an overview of nuclear reactor systems, helping readers to familiarize themselves with the varied designs. Then the readers are introduced to different possibilities for materials applications in the various sections of nuclear energy systems. Materials selection and life prediction methodologies for nuclear reactors are also presented in relation to creep, corrosion and other degradation mechanisms. An appendix compiles useful property data relevant for nuclear reactor applications. Throughout the book, there is a thorough coverage of various materials science principles, such as physical and mechanical metallurgy, defects and diffusion and radiation effects on materials, with serious efforts made to establish structure-property correlations wherever possible. With its emphasis on the latest developments and outstanding problems in the field, this is both a valuable introduction and a ready reference for beginners and experienced practitioners alike.


Nuclear Materials Science

Nuclear Materials Science

Author: Karl R. Whittle

Publisher:

Published: 2016

Total Pages: 0

ISBN-13: 9780750311052

DOWNLOAD EBOOK

Annotation 'Nuclear Materials Science' takes students from understanding standard materials science and engineering and uses it as a base to work from in teaching the additional requirements of nuclear engineering science.


Structural Materials for Generation IV Nuclear Reactors

Structural Materials for Generation IV Nuclear Reactors

Author: Pascal Yvon

Publisher: Woodhead Publishing

Published: 2016-08-27

Total Pages: 686

ISBN-13: 0081009127

DOWNLOAD EBOOK

Operating at a high level of fuel efficiency, safety, proliferation-resistance, sustainability and cost, generation IV nuclear reactors promise enhanced features to an energy resource which is already seen as an outstanding source of reliable base load power. The performance and reliability of materials when subjected to the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors are essential areas of study, as key considerations for the successful development of generation IV reactors are suitable structural materials for both in-core and out-of-core applications. Structural Materials for Generation IV Nuclear Reactors explores the current state-of-the art in these areas. Part One reviews the materials, requirements and challenges in generation IV systems. Part Two presents the core materials with chapters on irradiation resistant austenitic steels, ODS/FM steels and refractory metals amongst others. Part Three looks at out-of-core materials. Structural Materials for Generation IV Nuclear Reactors is an essential reference text for professional scientists, engineers and postgraduate researchers involved in the development of generation IV nuclear reactors. - Introduces the higher neutron doses and extremely corrosive higher temperature environments that will be found in generation IV nuclear reactors and implications for structural materials - Contains chapters on the key core and out-of-core materials, from steels to advanced micro-laminates - Written by an expert in that particular area


An Introduction to Nuclear Materials

An Introduction to Nuclear Materials

Author: K. Linga Murty

Publisher: John Wiley & Sons

Published: 2013-01-29

Total Pages: 400

ISBN-13: 3527407677

DOWNLOAD EBOOK

Covering both fundamental and advanced aspects in an accessible way, this textbook begins with an overview of nuclear reactor systems, helping readers to familiarize themselves with the varied designs. Then the readers are introduced to different possibilities for materials applications in the various sections of nuclear energy systems. Materials selection and life prediction methodologies for nuclear reactors are also presented in relation to creep, corrosion and other degradation mechanisms. An appendix compiles useful property data relevant for nuclear reactor applications. Throughout the book, there is a thorough coverage of various materials science principles, such as physical and mechanical metallurgy, defects and diffusion and radiation effects on materials, with serious efforts made to establish structure-property correlations wherever possible. With its emphasis on the latest developments and outstanding problems in the field, this is both a valuable introduction and a ready reference for beginners and experienced practitioners alike.


Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications

Author: Robert Odette

Publisher: Newnes

Published: 2019-08-15

Total Pages: 676

ISBN-13: 012397349X

DOWNLOAD EBOOK

High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors' unique personal insight from decades of frontline research, engineering and management. - Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. - Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. - Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.


Nuclear Corrosion Science and Engineering

Nuclear Corrosion Science and Engineering

Author: Damien Feron

Publisher: Elsevier

Published: 2012-02-21

Total Pages: 1073

ISBN-13: 085709534X

DOWNLOAD EBOOK

Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation.This book critically reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities. Initial sections introduce the complex field of nuclear corrosion science, with detailed chapters on the different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them. This is complemented by reviews of monitoring and control methodologies, as well as modelling and lifetime prediction approaches. Given that corrosion is an applied science, the final sections review corrosion issues across the range of current and next-generation nuclear reactors, and across such nuclear applications as fuel reprocessing facilities, radioactive waste storage and geological disposal systems.With its distinguished editor and international team of expert contributors, Nuclear corrosion science and engineering is an invaluable reference for nuclear metallurgists, materials scientists and engineers, as well as nuclear facility operators, regulators and consultants, and researchers and academics in this field. - Comprehensively reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities - Chapters assess different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them - Considers monitoring and control methodologies, as well as modelling and lifetime prediction approaches


An Introduction to Nuclear Waste Immobilisation

An Introduction to Nuclear Waste Immobilisation

Author: Michael I Ojovan

Publisher: Elsevier

Published: 2013-12-06

Total Pages: 0

ISBN-13: 9780080993928

DOWNLOAD EBOOK

Drawing on the authors' extensive experience in the processing and disposal of waste, An Introduction to Nuclear Waste Immobilisation, Second Edition examines the gamut of nuclear waste issues from the natural level of radionuclides in the environment to geological disposal of waste-forms and their long-term behavior. It covers all-important aspects of processing and immobilization, including nuclear decay, regulations, new technologies and methods. Significant focus is given to the analysis of the various matrices used, especially cement and glass, with further discussion of other matrices such as bitumen. The final chapter concentrates on the performance assessment of immobilizing materials and safety of disposal, providing a full range of the resources needed to understand and correctly immobilize nuclear waste.


Nuclear Energy

Nuclear Energy

Author: Raymond L. Murray

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 462

ISBN-13: 1483287866

DOWNLOAD EBOOK

This expanded, revised, and updated fourth edition of Nuclear Energy maintains the tradition of providing clear and comprehensive coverage of all aspects of the subject, with emphasis on the explanation of trends and developments. As in earlier editions, the book is divided into three parts that achieve a natural flow of ideas: Basic Concepts, including the fundamentals of energy, particle interactions, fission, and fusion; Nuclear Systems, including accelerators, isotope separators, detectors, and nuclear reactors; and Nuclear Energy and Man, covering the many applications of radionuclides, radiation, and reactors, along with a discussion of wastes and weapons. A minimum of mathematical background is required, but there is ample opportunity to learn characteristic numbers through the illustrative calculations and the exercises. An updated Solution Manual is available to the instructor. A new feature to aid the student is a set of some 50 Computer Exercises, using a diskette of personal computer programs in BASIC and spreadsheet, supplied by the author at a nominal cost. The book is of principal value as an introduction to nuclear science and technology for early college students, but can be of benefit to science teachers and lecturers, nuclear utility trainees and engineers in other fields.


Nuclear Engineering Handbook

Nuclear Engineering Handbook

Author: Kenneth D. Kok

Publisher: CRC Press

Published: 2016-10-03

Total Pages: 1328

ISBN-13: 1315356309

DOWNLOAD EBOOK

Building upon the success of the first edition, the Nuclear Engineering Handbook, Second Edition, provides a comprehensive, up-to-date overview of nuclear power engineering. Consisting of chapters written by leading experts, this volume spans a wide range of topics in the areas of nuclear power reactor design and operation, nuclear fuel cycles, and radiation detection. Plant safety issues are addressed, and the economics of nuclear power generation in the 21st century are presented. The Second Edition also includes full coverage of Generation IV reactor designs, and new information on MRS technologies, small modular reactors, and fast reactors.