An Introduction to Noncommutative Noetherian Rings

An Introduction to Noncommutative Noetherian Rings

Author: K. R. Goodearl

Publisher: Cambridge University Press

Published: 2004-07-12

Total Pages: 372

ISBN-13: 9780521545372

DOWNLOAD EBOOK

This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.


Introduction to Noncommutative Algebra

Introduction to Noncommutative Algebra

Author: Matej Brešar

Publisher: Springer

Published: 2014-10-14

Total Pages: 227

ISBN-13: 3319086936

DOWNLOAD EBOOK

Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.


Commutative Algebra

Commutative Algebra

Author: Marco Fontana

Publisher: Springer Science & Business Media

Published: 2010-09-29

Total Pages: 491

ISBN-13: 144196990X

DOWNLOAD EBOOK

Commutative algebra is a rapidly growing subject that is developing in many different directions. This volume presents several of the most recent results from various areas related to both Noetherian and non-Noetherian commutative algebra. This volume contains a collection of invited survey articles by some of the leading experts in the field. The authors of these chapters have been carefully selected for their important contributions to an area of commutative-algebraic research. Some topics presented in the volume include: generalizations of cyclic modules, zero divisor graphs, class semigroups, forcing algebras, syzygy bundles, tight closure, Gorenstein dimensions, tensor products of algebras over fields, as well as many others. This book is intended for researchers and graduate students interested in studying the many topics related to commutative algebra.


Noncommutative Noetherian Rings

Noncommutative Noetherian Rings

Author: John C. McConnell

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 658

ISBN-13: 0821821695

DOWNLOAD EBOOK

This is a reprinted edition of a work that was considered the definitive account in the subject area upon its initial publication by J. Wiley & Sons in 1987. It presents, within a wider context, a comprehensive account of noncommutative Noetherian rings. The author covers the major developments from the 1950s, stemming from Goldie's theorem and onward, including applications to group rings, enveloping algebras of Lie algebras, PI rings, differential operators, and localization theory. The book is not restricted to Noetherian rings, but discusses wider classes of rings where the methods apply more generally. In the current edition, some errors were corrected, a number of arguments have been expanded, and the references were brought up to date. This reprinted edition will continue to be a valuable and stimulating work for readers interested in ring theory and its applications to other areas of mathematics.


Graduate Algebra

Graduate Algebra

Author: Louis Halle Rowen

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 464

ISBN-13: 9780821883976

DOWNLOAD EBOOK

This book is an expanded text for a graduate course in commutative algebra, focusing on the algebraic underpinnings of algebraic geometry and of number theory. Accordingly, the theory of affine algebras is featured, treated both directly and via the theory of Noetherian and Artinian modules, and the theory of graded algebras is included to provide the foundation for projective varieties. Major topics include the theory of modules over a principal ideal domain, and its applicationsto matrix theory (including the Jordan decomposition), the Galois theory of field extensions, transcendence degree, the prime spectrum of an algebra, localization, and the classical theory of Noetherian and Artinian rings. Later chapters include some algebraic theory of elliptic curves (featuring theMordell-Weil theorem) and valuation theory, including local fields. One feature of the book is an extension of the text through a series of appendices. This permits the inclusion of more advanced material, such as transcendental field extensions, the discriminant and resultant, the theory of Dedekind domains, and basic theorems of rings of algebraic integers. An extended appendix on derivations includes the Jacobian conjecture and Makar-Limanov's theory of locally nilpotent derivations. Grobnerbases can be found in another appendix. Exercises provide a further extension of the text. The book can be used both as a textbook and as a reference source.


Simple Noetherian Rings

Simple Noetherian Rings

Author: John Cozzens

Publisher: Cambridge University Press

Published: 1975-11-28

Total Pages: 142

ISBN-13: 9780521207348

DOWNLOAD EBOOK

This work specifically surveys simple Noetherian rings. The authors present theorems on the structure of simple right Noetherian rings and, more generally, on simple rings containing a uniform right ideal U. The text is as elementary and self-contained as practicable, and the little background required in homological and categorical algebra is given in a short appendix. Full definitions are given and short, complete, elementary proofs are provided for such key theorems as the Morita theorem, the Correspondence theorem, the Wedderburn-Artin theorem, the Goldie-Lesieur-Croisot theorem, and many others. Complex mathematical machinery has been eliminated wherever possible or its introduction into the text delayed as long as possible. (Even tensor products are not required until Chapter 3.)


A Course in Ring Theory

A Course in Ring Theory

Author: Donald S. Passman

Publisher: American Mathematical Soc.

Published: 2004-09-28

Total Pages: 324

ISBN-13: 9780821869383

DOWNLOAD EBOOK

Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index


Introductory Lectures on Rings and Modules

Introductory Lectures on Rings and Modules

Author: John A. Beachy

Publisher: Cambridge University Press

Published: 1999-04-22

Total Pages: 252

ISBN-13: 9780521644075

DOWNLOAD EBOOK

A first-year graduate text or reference for advanced undergraduates on noncommutative aspects of rings and modules.


Modules and Rings

Modules and Rings

Author: John Dauns

Publisher: Cambridge University Press

Published: 1994-10-28

Total Pages: 470

ISBN-13: 0521462584

DOWNLOAD EBOOK

This book on modern module and non-commutative ring theory is ideal for beginning graduate students. It starts at the foundations of the subject and progresses rapidly through the basic concepts to help the reader reach current research frontiers. Students will have the chance to develop proofs, solve problems, and to find interesting questions. The first half of the book is concerned with free, projective, and injective modules, tensor algebras, simple modules and primitive rings, the Jacobson radical, and subdirect products. Later in the book, more advanced topics, such as hereditary rings, categories and functors, flat modules, and purity are introduced. These later chapters will also prove a useful reference for researchers in non-commutative ring theory. Enough background material (including detailed proofs) is supplied to give the student a firm grounding in the subject.