An Introduction to Mathematics for Economics introduces quantitative methods to students of economics and finance in a succinct and accessible style. The introductory nature of this textbook means a background in economics is not essential, as it aims to help students appreciate that learning mathematics is relevant to their overall understanding of the subject. Economic and financial applications are explained in detail before students learn how mathematics can be used, enabling students to learn how to put mathematics into practice. Starting with a revision of basic mathematical principles the second half of the book introduces calculus, emphasising economic applications throughout. Appendices on matrix algebra and difference/differential equations are included for the benefit of more advanced students. Other features, including worked examples and exercises, help to underpin the readers' knowledge and learning. Akihito Asano has drawn upon his own extensive teaching experience to create an unintimidating yet rigorous textbook.
An Introduction to Mathematics for Economics introduces quantitative methods to students of economics and finance in a succinct and accessible style. The introductory nature of this textbook means a background in economics is not essential, as it aims to help students appreciate that learning mathematics is relevant to their overall understanding of the subject. Economic and financial applications are explained in detail before students learn how mathematics can be used, enabling students to learn how to put mathematics into practice. Starting with a revision of basic mathematical principles the second half of the book introduces calculus, emphasising economic applications throughout. Appendices on matrix algebra and difference/differential equations are included for the benefit of more advanced students. Other features, including worked examples and exercises, help to underpin the readers' knowledge and learning. Akihito Asano has drawn upon his own extensive teaching experience to create an unintimidating yet rigorous textbook.
Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory
This book is a self-contained treatment of all the mathematics needed by undergraduate and masters-level students of economics, econometrics and finance. Building up gently from a very low level, the authors provide a clear, systematic coverage of calculus and matrix algebra. The second half of the book gives a thorough account of probability, dynamics and static and dynamic optimisation. The last four chapters are an accessible introduction to the rigorous mathematical analysis used in graduate-level economics. The emphasis throughout is on intuitive argument and problem-solving. All methods are illustrated by examples, exercises and problems selected from central areas of modern economic analysis. The book's careful arrangement in short chapters enables it to be used in a variety of course formats for students with or without prior knowledge of calculus, for reference and for self-study. The preface to the new edition and full table of contents are available from https://www.manchesterhive.com/page/mathematics-for-economists-supplementary-materials
This book provides a comprehensive introduction to the mathematical foundations of economics, from basic set theory to fixed point theorems and constrained optimization. Rather than simply offer a collection of problem-solving techniques, the book emphasizes the unifying mathematical principles that underlie economics. Features include an extended presentation of separation theorems and their applications, an account of constraint qualification in constrained optimization, and an introduction to monotone comparative statics. These topics are developed by way of more than 800 exercises. The book is designed to be used as a graduate text, a resource for self-study, and a reference for the professional economist.
This text offers a presentation of the mathematics required to tackle problems in economic analysis. After a review of the fundamentals of sets, numbers, and functions, it covers limits and continuity, the calculus of functions of one variable, linear algebra, multivariate calculus, and dynamics.
Essential Mathematics for Economics and Business is established as one of the leading introductory textbooks on mathematics for students of business and economics. Combining a user–friendly approach to mathematics with practical applications to the subjects, the text provides students with a clear and comprehensible guide to mathematics. The fundamental mathematical concepts are explained in a simple and accessible style, using a wide selection of worked examples, progress exercises and real–world applications. New to this Edition Fully updated text with revised worked examples and updated material on Excel and Powerpoint New exercises in mathematics and its applications to give further clarity and practice opportunities Fully updated online material including animations and a new test bank The fourth edition is supported by a companion website at www.wiley.com/college/bradley, which contains: Animations of selected worked examples providing students with a new way of understanding the problems Access to the Maple T.A. test bank, which features over 500 algorithmic questions Further learning material, applications, exercises and solutions. Problems in context studies, which present the mathematics in a business or economics framework. Updated PowerPoint slides, Excel problems and solutions. "The text is aimed at providing an introductory-level exposition of mathematical methods for economics and business students. In terms of level, pace, complexity of examples and user-friendly style the text is excellent - it genuinely recognises and meets the needs of students with minimal maths background." —Colin Glass, Emeritus Professor, University of Ulster "One of the major strengths of this book is the range of exercises in both drill and applications. Also the 'worked examples' are excellent; they provide examples of the use of mathematics to realistic problems and are easy to follow." —Donal Hurley, formerly of University College Cork "The most comprehensive reader in this topic yet, this book is an essential aid to the avid economist who loathes mathematics!" —Amazon.co.uk