Introduction to Materials Science
Author: Barry Royce Schlenker
Publisher: Jacaranda Press
Published: 1986
Total Pages: 364
ISBN-13: 9780701621810
DOWNLOAD EBOOKRead and Download eBook Full
Author: Barry Royce Schlenker
Publisher: Jacaranda Press
Published: 1986
Total Pages: 364
ISBN-13: 9780701621810
DOWNLOAD EBOOKAuthor: Wenceslao González-Viñas
Publisher: Princeton University Press
Published: 2004-07-26
Total Pages: 201
ISBN-13: 0691070970
DOWNLOAD EBOOKMaterials science has undergone a revolutionary transformation in the past two decades. It is an interdisciplinary field that has grown out of chemistry, physics, biology, and engineering departments. In this book, González-Viñas and Mancini provide an introduction to the field, one that emphasizes a qualitative understanding of the subject, rather than an intensely mathematical one. The book covers the topics usually treated in a first course on materials science, such as crystalline solids and defects. It describes the electrical, mechanical, and thermal properties of matter; the unique properties of dielectric and magnetic materials; the phenomenon of superconductivity; polymers; and optical and amorphous materials. More modern subjects, such as fullerenes, liquid crystals, and surface phenomena are also covered, and problems are included at the end of each chapter. An Introduction to Materials Science is addressed to both undergraduate students with basic skills in chemistry and physics, and those who simply want to know more about the topics on which the book focuses.
Author: Brian S. Mitchell
Publisher: John Wiley & Sons
Published: 2004-01-16
Total Pages: 976
ISBN-13: 0471473367
DOWNLOAD EBOOKAn Introduction to Materials Engineering and Science for Chemical and Materials Engineers provides a solid background in materials engineering and science for chemical and materials engineering students. This book: Organizes topics on two levels; by engineering subject area and by materials class. Incorporates instructional objectives, active-learning principles, design-oriented problems, and web-based information and visualization to provide a unique educational experience for the student. Provides a foundation for understanding the structure and properties of materials such as ceramics/glass, polymers, composites, bio-materials, as well as metals and alloys. Takes an integrated approach to the subject, rather than a "metals first" approach.
Author: William D. Callister
Publisher: John Wiley & Sons
Published: 2011
Total Pages: 122
ISBN-13: 9780470505861
DOWNLOAD EBOOKBuilding on the success of previous editions, this book continues to provide engineers with a strong understanding of the three primary types of materials and composites, as well as the relationships that exist between the structural elements of materials and their properties. The relationships among processing, structure, properties, and performance components for steels, glass-ceramics, polymer fibers, and silicon semiconductors are explored throughout the chapters. The discussion of the construction of crystallographic directions in hexagonal unit cells is expanded. At the end of each chapter, engineers will also find revised summaries and new equation summaries to reexamine key concepts.
Author: Buddy D. Ratner
Publisher: Elsevier
Published: 2004-08-18
Total Pages: 879
ISBN-13: 008047036X
DOWNLOAD EBOOKThe second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemical and surface properties of these materials. - Provides comprehensive coverage of principles and applications of all classes of biomaterials - Integrates concepts of biomaterials science and biological interactions with clinical science and societal issues including law, regulation, and ethics - Discusses successes and failures of biomaterials applications in clinical medicine and the future directions of the field - Cover the broad spectrum of biomaterial compositions including polymers, metals, ceramics, glasses, carbons, natural materials, and composites - Endorsed by the Society for Biomaterials
Author: William D. Callister, Jr.
Publisher: John Wiley & Sons
Published: 2020-06-23
Total Pages: 994
ISBN-13: 1119721776
DOWNLOAD EBOOKMaterials Science and Engineering: An Introduction promotes student understanding of the three primary types of materials (metals, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties. The 10th edition provides new or updated coverage on a number of topics, including: the Materials Paradigm and Materials Selection Charts, 3D printing and additive manufacturing, biomaterials, recycling issues and the Hall effect.
Author: Jean P Mercier
Publisher: Elsevier
Published: 2012-12-02
Total Pages: 476
ISBN-13: 008095071X
DOWNLOAD EBOOKThe approach of this concise but comprehensive introduction, covering all major classes of materials, is right for not just materials science students and professionals, but also for those in engineering, physics and chemistry, or other related disciplines. The characteristics of all main classes of materials, metals, polymers and ceramics, are explained with reference to real-world examples. So each class of material is described, then its properties are explained, with illustrative examples from the leading edge of application. This edition contains new material on nanomaterials and nanostructures, and includes a study of degradation and corrosion, and a presentation of the main organic composite materials. Illustrative examples include carbon fibres, the silicon crystal, metallic glasses, and diamond films. Applications explored include ultra-light aircraft, contact lenses, dental materials, single crystal blades for gas turbines, use of lasers in the automotive industry, cables for cable cars, permanent magnets and molecular electronic devices. - Covers latest materials including nanomaterials and nanostructures - Real-world case studies bring the theory to life and illustrate the latest in good design - All major classes of materials are covered in this concise yet comprehensive volume
Author: Shackelford
Publisher: Pearson Education India
Published: 2007-09
Total Pages: 804
ISBN-13: 9788131700907
DOWNLOAD EBOOKThis Text Provides A Balanced And Current Treatment Of The Full Spectrum Of Engineering Materials, Covering All The Physical Properties, Applications And Relevant Properties Associated With The Subject. It Explores All The Major Categories Of Materials While Offering Detailed Examinations Of A Wide Range Of New Materials With High-Tech Applications.
Author: Elliot Douglas
Publisher: Prentice Hall
Published: 2014
Total Pages: 0
ISBN-13: 9780132136426
DOWNLOAD EBOOKThis unique book is designed to serve as an active learning tool that uses carefully selected information and guided inquiry questions. Guided inquiry helps readers reach true understanding of concepts as they develop greater ownership over the material presented. First, background information or data is presented. Then, concept invention questions lead the students to construct their own understanding of the fundamental concepts represented. Finally, application questions provide the reader with practice in solving problems using the concepts that they have derived from their own valid conclusions. KEY TOPICS: What is Guided Inquiry?; What is Materials Science and Engineering?; Bonding; Atomic Arrangements in Solids; The Structure of Polymers; Microstructure: Phase Diagrams; Diffusion; Microstructure: Kinetics; Mechanical Behavior; Materials in the Environment; Electronic Behavior; Thermal Behavior; Materials Selection and Design. MasteringEngineering, the most technologically advanced online tutorial and homework system available, can be packaged with this edition. MasteringEngineering is designed to provide students with customized coaching and individualized feedback to help improve problem-solving skills while providing instructors with rich teaching diagnostics. Note: If you are purchasing the standalone text (ISBN: 0132136422) or electronic version, MasteringEngineering does not come automatically packaged with the text. To purchase MasteringEngineering, please visit: www.masteringengineering.com or you can purchase a package of the physical text + MasteringEngineering by searching the Pearson Higher Education web site. MasteringEngineering is not a self-paced technology and should only be purchased when required by an instructor. MARKET: For students taking the Materials Science course in the Mechanical & Aerospace Engineering department. This book is also suitable for professionals seeking a guided inquiry approach to materials science.
Author: Richard LeSar
Publisher: Cambridge University Press
Published: 2013-03-28
Total Pages: 429
ISBN-13: 1107328144
DOWNLOAD EBOOKEmphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.