An Introduction to Statistical Genetic Data Analysis

An Introduction to Statistical Genetic Data Analysis

Author: Melinda C. Mills

Publisher: MIT Press

Published: 2020-02-18

Total Pages: 433

ISBN-13: 0262357445

DOWNLOAD EBOOK

A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website.


Loose-leaf Version for Introduction to Genetic Analysis

Loose-leaf Version for Introduction to Genetic Analysis

Author: Anthony J.F. Griffiths

Publisher: W. H. Freeman

Published: 2010-12-24

Total Pages: 0

ISBN-13: 9781429272773

DOWNLOAD EBOOK

From the publisher. Since its inception, Introduction to Genetic Analysis (IGA) has been known for its prominent authorship including leading scientists in their field who are great educators. This market best-seller exposes students to the landmark experiments in genetics, teaching students how to analyze experimental data and how to draw their own conclusions based on scientific thinking while teaching students how to think like geneticists.


An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms

Author: Melanie Mitchell

Publisher: MIT Press

Published: 1998-03-02

Total Pages: 226

ISBN-13: 9780262631853

DOWNLOAD EBOOK

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.


Genetics

Genetics

Author: Daniel L. Hartl

Publisher: Jones & Bartlett Publishers

Published: 2012

Total Pages: 830

ISBN-13: 1449626114

DOWNLOAD EBOOK


Introduction to Genetic Algorithms

Introduction to Genetic Algorithms

Author: S.N. Sivanandam

Publisher: Springer Science & Business Media

Published: 2007-10-24

Total Pages: 453

ISBN-13: 3540731903

DOWNLOAD EBOOK

This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.


Ecology

Ecology

Author: Michael Lee Cain

Publisher: Sinauer Associates, Incorporated

Published: 2011

Total Pages: 0

ISBN-13: 9780878936014

DOWNLOAD EBOOK

Offering a balance of subject matter emphasis, clearly presented concepts and engaging examples, this book aims to help students gain a better understanding of ecology. Emphasis is placed on connections in nature, the importance of ecology to environmental health and services, and links to evolution.


An Introduction to Genetic Epidemiology

An Introduction to Genetic Epidemiology

Author: Palmer, Lyle J.

Publisher: Policy Press

Published: 2011-05-31

Total Pages: 240

ISBN-13: 1861348975

DOWNLOAD EBOOK

This book brings together leading experts to provide an introduction to genetic epidemiology that begins with a primer in human molecular genetics through all the standard methods in population genetics and genetic epidemiology required for an adequate grounding in the field.