Introduction to Business Analytics, Second Edition

Introduction to Business Analytics, Second Edition

Author: Majid Nabavi

Publisher: Business Expert Press

Published: 2020-12-14

Total Pages: 176

ISBN-13: 1953349757

DOWNLOAD EBOOK

This book presents key concepts related to quantitative analysis in business. It is targeted at business students (both undergraduate and graduate) taking an introductory core course. Business analytics has grown to be a key topic in business curricula, and there is a need for stronger quantitative skills and understanding of fundamental concepts. This second edition adds material on Tableau, a very useful software for business analytics. This supplements the tools from Excel covered in the first edition, to include Data Analysis Toolpak and SOLVER.


An Introduction to Business Analytics

An Introduction to Business Analytics

Author: Ger Koole

Publisher: Lulu.com

Published: 2019

Total Pages: 174

ISBN-13: 9082017938

DOWNLOAD EBOOK

Business Analytics (BA) is about turning data into decisions. This book covers the full range of BA topics, including statistics, machine learning and optimization, in a way that makes them accessible to a broader audience. Decision makers will gain enough insight into the subject to have meaningful discussions with machine learning specialists, and those starting out as data scientists will benefit from an overview of the field and take their first steps as business analytics specialist. Through this book and the various exercises included, you will be equipped with an understanding of BA, while learning R, a popular tool for statistics and machine learning.


Introduction to Business Analytics Using Simulation

Introduction to Business Analytics Using Simulation

Author: Jonathan P. Pinder

Publisher: Academic Press

Published: 2022-02-06

Total Pages: 513

ISBN-13: 0323991173

DOWNLOAD EBOOK

Introduction to Business Analytics Using Simulation, Second Edition employs an innovative strategy to teach business analytics. The book uses simulation modeling and analysis as mechanisms to introduce and link predictive and prescriptive modeling. Because managers can't fully assess what will happen in the future, but must still make decisions, the book treats uncertainty as an essential element in decision-making. Its use of simulation gives readers a superior way of analyzing past data, understanding an uncertain future, and optimizing results to select the best decision. With its focus on uncertainty and variability, this book provides a comprehensive foundation for business analytics. Students will gain a better understanding of fundamental statistical concepts that are essential to marketing research, Six-Sigma, financial analysis, and business analytics. - Teaches managers how they can use business analytics to formulate and solve business problems to enhance managerial decision-making - Explains the processes needed to develop, report and analyze business data - Describes how to use and apply business analytics software - Offers expanded coverage on the value and application of prescriptive analytics - Includes a wealth of illustrative exercises that are newly organized by difficulty level - Winner of the 2017 Textbook and Academic Authors Association's (TAA) Most Promising New Textbook Award in the prior edition


A Business Analyst's Introduction to Business Analytics

A Business Analyst's Introduction to Business Analytics

Author: Adam Fleischhacker

Publisher:

Published: 2020-07-20

Total Pages: 298

ISBN-13:

DOWNLOAD EBOOK

This up-to-date business analytics textbook (published in July 2020) will get you harnessing the power of the R programming language to: manipulate and model data, discover and communicate insight, to visually communicate that insight, and successfully advocate for change within an organization. Book Description A frequent teaching-award winning professor with an analytics-industry background shares his hands-on guide to learning business analytics. It is the first textbook addressing a complete and modern business analytics workflow that includes data manipulation, data visualization, modelling business problems with graphical models, translating graphical models into code, and presenting insights back to stakeholders. Book Highlights Content that is accessible to anyone, even most analytics beginners. If you have taken a stats course, you are good to go. Assumes no knowledge of the R programming language. Provides introduction to R, RStudio, and the Tidyverse. Provides a solid foundation and an implementable workflow for anyone wading into the Bayesian inference waters. Provides a complete workflow within the R-ecosystem; there is no need to learn several programming languages or work through clunky interfaces between software tools. First book introducing two powerful R-packages - `causact` for visual modelling of business problems and `greta` which is an R interface to `TensorFlow` used for Bayesian inference. Uses the intuitive coding practices of the `tidyverse` including using `dplyr` for data manipulation and `ggplot2` for data visualization. Datasets that are freely and easily accessible. Code for generating all results and almost every visualization used in the textbook. Do not learn statistical computation or fancy math in a vacuum, learn it through this guide within the context of solving business problems.


Essentials of Business Analytics

Essentials of Business Analytics

Author: Bhimasankaram Pochiraju

Publisher: Springer

Published: 2019-07-10

Total Pages: 971

ISBN-13: 3319688375

DOWNLOAD EBOOK

This comprehensive edited volume is the first of its kind, designed to serve as a textbook for long-duration business analytics programs. It can also be used as a guide to the field by practitioners. The book has contributions from experts in top universities and industry. The editors have taken extreme care to ensure continuity across the chapters. The material is organized into three parts: A) Tools, B) Models and C) Applications. In Part A, the tools used by business analysts are described in detail. In Part B, these tools are applied to construct models used to solve business problems. Part C contains detailed applications in various functional areas of business and several case studies. Supporting material can be found in the appendices that develop the pre-requisites for the main text. Every chapter has a business orientation. Typically, each chapter begins with the description of business problems that are transformed into data questions; and methodology is developed to solve these questions. Data analysis is conducted using widely used software, the output and results are clearly explained at each stage of development. These are finally transformed into a business solution. The companion website provides examples, data sets and sample code for each chapter.


Business Analytics

Business Analytics

Author: Jay Liebowitz

Publisher: CRC Press

Published: 2013-12-19

Total Pages: 274

ISBN-13: 1466596104

DOWNLOAD EBOOK

Together, Big Data, high-performance computing, and complex environments create unprecedented opportunities for organizations to generate game-changing insights that are based on hard data. Business Analytics: An Introduction explains how to use business analytics to sort through an ever-increasing amount of data and improve the decision-making cap


R for Business Analytics

R for Business Analytics

Author: A Ohri

Publisher: Springer Science & Business Media

Published: 2012-09-14

Total Pages: 322

ISBN-13: 1461443423

DOWNLOAD EBOOK

This book examines common tasks performed by business analysts and helps the reader navigate the wealth of information in R and its 4000 packages to create useful analytics applications. Includes interviews with corporate users of R, and easy-to-use examples.


Business Analytics Principles, Concepts, and Applications with SAS

Business Analytics Principles, Concepts, and Applications with SAS

Author: Marc J. Schniederjans

Publisher: Pearson Education

Published: 2014-10-07

Total Pages: 353

ISBN-13: 0133989402

DOWNLOAD EBOOK

Responding to a shortage of effective content for teaching business analytics, this text offers a complete, integrated package of knowledge for newcomers to the subject. The authors present an up-to-date view of what business analytics is, why it is so valuable, and most importantly, how it is used. They combine essential conceptual content with clear explanations of the tools, techniques, and methodologies actually used to implement modern business analytics initiatives. Business Analytics Principles, Concepts, and Applications with SAS offers a proven step-wise approach to designing an analytics program, and successfully integrating it into your organization, so it effectively provides intelligence for competitive advantage in decision making. Using step-by-step examples, the authors identify common challenges that can be addressed by business analytics, illustrate each type of analytics (descriptive, prescriptive, and predictive), and guide users in undertaking their own projects. Illustrating the real-world use of statistical, information systems, and management science methodologies, these examples help readers successfully apply the methods they are learning. Unlike most competitive guides, Business Analytics Principles, Concepts, and Applications with SAS demonstrates the use of SAS software, permitting instructors to spend less time teaching software and more time focusing on business analytics itself.


Data Mining and Business Analytics with R

Data Mining and Business Analytics with R

Author: Johannes Ledolter

Publisher: John Wiley & Sons

Published: 2013-05-28

Total Pages: 304

ISBN-13: 1118572157

DOWNLOAD EBOOK

Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.