An INTRODUCTION to ANALYSIS (Differential Calculus)

An INTRODUCTION to ANALYSIS (Differential Calculus)

Author: Ghosh & Maity

Publisher: New Central Book Agency

Published: 2012

Total Pages: 996

ISBN-13: 9788173814372

DOWNLOAD EBOOK

In the present volume the 'analysis' part has been throughly modified according to the new concepts and notations. The 'application' part is rich enough and almost no modification was required.


Introduction to Analysis

Introduction to Analysis

Author: Maxwell Rosenlicht

Publisher: Courier Corporation

Published: 2012-05-04

Total Pages: 270

ISBN-13: 0486134687

DOWNLOAD EBOOK

Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.


Introduction to Calculus and Analysis II/1

Introduction to Calculus and Analysis II/1

Author: Richard Courant

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 585

ISBN-13: 3642571492

DOWNLOAD EBOOK

From the reviews: "...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." --Acta Scientiarum Mathematicarum, 1991


Differential Calculus and Its Applications

Differential Calculus and Its Applications

Author: Michael J. Field

Publisher: Courier Corporation

Published: 2013-04-10

Total Pages: 338

ISBN-13: 0486298841

DOWNLOAD EBOOK

Based on undergraduate courses in advanced calculus, the treatment covers a wide range of topics, from soft functional analysis and finite-dimensional linear algebra to differential equations on submanifolds of Euclidean space. 1976 edition.


Introduction to Analysis in Several Variables: Advanced Calculus

Introduction to Analysis in Several Variables: Advanced Calculus

Author: Michael E. Taylor

Publisher: American Mathematical Soc.

Published: 2020-07-27

Total Pages: 462

ISBN-13: 1470456699

DOWNLOAD EBOOK

This text was produced for the second part of a two-part sequence on advanced calculus, whose aim is to provide a firm logical foundation for analysis. The first part treats analysis in one variable, and the text at hand treats analysis in several variables. After a review of topics from one-variable analysis and linear algebra, the text treats in succession multivariable differential calculus, including systems of differential equations, and multivariable integral calculus. It builds on this to develop calculus on surfaces in Euclidean space and also on manifolds. It introduces differential forms and establishes a general Stokes formula. It describes various applications of Stokes formula, from harmonic functions to degree theory. The text then studies the differential geometry of surfaces, including geodesics and curvature, and makes contact with degree theory, via the Gauss–Bonnet theorem. The text also takes up Fourier analysis, and bridges this with results on surfaces, via Fourier analysis on spheres and on compact matrix groups.


Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition)

Author: Lynn Harold Loomis

Publisher: World Scientific Publishing Company

Published: 2014-02-26

Total Pages: 595

ISBN-13: 9814583952

DOWNLOAD EBOOK

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.


Calculus on Manifolds

Calculus on Manifolds

Author: Michael Spivak

Publisher: Westview Press

Published: 1965

Total Pages: 164

ISBN-13: 9780805390216

DOWNLOAD EBOOK

This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.


A Visual Introduction to Differential Forms and Calculus on Manifolds

A Visual Introduction to Differential Forms and Calculus on Manifolds

Author: Jon Pierre Fortney

Publisher: Springer

Published: 2018-11-03

Total Pages: 470

ISBN-13: 3319969927

DOWNLOAD EBOOK

This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.