Masters Theses in the Pure and Applied Sciences

Masters Theses in the Pure and Applied Sciences

Author: Wade H. Shafer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 411

ISBN-13: 1461305993

DOWNLOAD EBOOK

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 32 (thesis year 1987) a total of 12,483 theses titles from 22 Canadian and 176 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 32 reports theses submitted in 1987, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.


The Viscous Incompressible Flow Past a Circular Cylinder at Moderate Reynolds Numbers

The Viscous Incompressible Flow Past a Circular Cylinder at Moderate Reynolds Numbers

Author: Robert Leigh Underwood

Publisher:

Published: 1968

Total Pages: 112

ISBN-13:

DOWNLOAD EBOOK

An accurate description of the flow field about a cylinder is found possible with a semi-analytical solution of the full Navier-Stokes equations. The method of series truncation is employed to reduce the governing partial differential equations of motion to a system of ordinary differential equations which can be integrated numerically. This method, which has been applied to the hypersonic blunt-body problem by previous investigators with great success, is essentially a successive-approximation procedure which treats an elliptic partial differential equation as if it were parabolic or hyperbolic. The dependent variable is expanded in one co-ordinate, and backward influence in the resultant system of ordinary differential equations is prevented by series curtailment. Results are given for Reynolds numbers between 0.4 and 10.0 (based on diameter); however, the method can be applied to both higher and lower Reynolds numbers without modification. An accurate prediction of the Reynolds number at which separation first occurs behind the circular cylinder is made; this separation Reynolds number is found to be 5.75. Over the entire Reynolds-number range investigated, characteristic flow parameters such as the drag coefficient, pressure coefficient, standing-eddy length, and streamline pattern compare favorably with available experimental data and numerical-solution results. It is concluded that the semi-analytical method of series truncation permits accurate determination of the flow field about a circular cylinder at moderate Reynolds numbers without resorting either to full-numerical solution or to experiment. (Author).


On the Stability of Viscous Flow Between Rotating Cylinders

On the Stability of Viscous Flow Between Rotating Cylinders

Author: Ronald Lee Duty

Publisher:

Published: 1961

Total Pages: 1

ISBN-13:

DOWNLOAD EBOOK

The stability of Couette flow is discussed in the case in which the cylinders rotate in opposite directions by an asymptotic method in which the Taylor number is treated as a large parameter. On assuming the principle of exchange of stabilities to hold, the problem is then governed by a sixth-order differential equation with a simple turning point. It is then shown how the solutions of this equation can be represented asymptotically in terms of the solutions of a basic reference equation. The solutions of this basic reference equation have recently been tabulated; this is an explicit representation of the solution of the stability problem in terms of tabulated functions. Detailed results for the critical Taylor number and wave-number at the onset of instability and the associated eigenfunctions are given for a limiting case. In this case there exists an infinite number of cells between the cylinders but that the amplitude of the secondary motion in all but the innermost cell is small. (Author).