Methods of Algebraic Geometry in Control Theory: Part I

Methods of Algebraic Geometry in Control Theory: Part I

Author: Peter Falb

Publisher: Springer

Published: 2018-08-25

Total Pages: 211

ISBN-13: 3319980262

DOWNLOAD EBOOK

"An introduction to the ideas of algebraic geometry in the motivated context of system theory." Thus the author describes his textbook that has been specifically written to serve the needs of students of systems and control. Without sacrificing mathematical care, the author makes the basic ideas of algebraic geometry accessible to engineers and applied scientists. The emphasis is on constructive methods and clarity rather than abstraction. The student will find here a clear presentation with an applied flavor, of the core ideas in the algebra-geometric treatment of scalar linear system theory. The author introduces the four representations of a scalar linear system and establishes the major results of a similar theory for multivariable systems appearing in a succeeding volume (Part II: Multivariable Linear Systems and Projective Algebraic Geometry). Prerequisites are the basics of linear algebra, some simple notions from topology and the elementary properties of groups, rings, and fields, and a basic course in linear systems. Exercises are an integral part of the treatment and are used where relevant in the main body of the text. The present, softcover reprint is designed to make this classic textbook available to a wider audience. "This book is a concise development of affine algebraic geometry together with very explicit links to the applications...[and] should address a wide community of readers, among pure and applied mathematicians." —Monatshefte für Mathematik


Linear Multivariable Systems

Linear Multivariable Systems

Author: W. A. Wolovich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 369

ISBN-13: 1461263921

DOWNLOAD EBOOK

This text was developed over a three year period of time (1971- 1973) from a variety of notes and references used in the presentation of a senior/first year graduate level course in the Division of En gineering at Brown University titled Linear System Theory. The in tent of the course was not only to introduce students to the more modern, state-space approach to multivariable control system analysis and design, as opposed to the classical, frequency domain approach, but also to draw analogies between the two approaches whenever and wherever possible. It is therefore felt that the material presented will have broader appeal to practicing engineers than a text devoted exclusively to the state-space approach. It was assumed that students taking the course had also taken, as a prerequisite, an undergraduate course in classical control theory and also were familiar with certain standard linear algebraic notions as well as the theory of ordinary differential equations, although a substantial effort was expended to make the material as self-contained as possible. In particular, Chapter 2 is employed to familiarize the reader with a good deal of the mathematical material employed through out the remainder of the text. Chapters 3 through 5 were drawn, in part, from a number of contemporary state-space and matrix algebraic references, as well as some recent research of the author, especially those portions which deal with polynomial matrices and the differential operator approach.


Max-linear Systems: Theory and Algorithms

Max-linear Systems: Theory and Algorithms

Author: Peter Butkovič

Publisher: Springer Science & Business Media

Published: 2010-08-05

Total Pages: 281

ISBN-13: 1849962995

DOWNLOAD EBOOK

Recent years have seen a significant rise of interest in max-linear theory and techniques. Specialised international conferences and seminars or special sessions devoted to max-algebra have been organised. This book aims to provide a first detailed and self-contained account of linear-algebraic aspects of max-algebra for general (that is both irreducible and reducible) matrices. Among the main features of the book is the presentation of the fundamental max-algebraic theory (Chapters 1-4), often scattered in research articles, reports and theses, in one place in a comprehensive and unified form. This presentation is made with all proofs and in full generality (that is for both irreducible and reducible matrices). Another feature is the presence of advanced material (Chapters 5-10), most of which has not appeared in a book before and in many cases has not been published at all. Intended for a wide-ranging readership, this book will be useful for anyone with basic mathematical knowledge (including undergraduate students) who wish to learn fundamental max-algebraic ideas and techniques. It will also be useful for researchers working in tropical geometry or idempotent analysis.


Linear Algebra and Matrix Theory

Linear Algebra and Matrix Theory

Author: Robert R. Stoll

Publisher: Courier Corporation

Published: 2012-10-17

Total Pages: 290

ISBN-13: 0486623181

DOWNLOAD EBOOK

Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.


Linear Algebra for Control Theory

Linear Algebra for Control Theory

Author: Paul Van Dooren

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 203

ISBN-13: 1461384192

DOWNLOAD EBOOK

During the past decade the interaction between control theory and linear algebra has been ever increasing, giving rise to new results in both areas. As a natural outflow of this research, this book presents information on this interdisciplinary area. The cross-fertilization between control and linear algebra can be found in subfields such as Numerical Linear Algebra, Canonical Forms, Ring-theoretic Methods, Matrix Theory, and Robust Control. This book's editors were challenged to present the latest results in these areas and to find points of common interest. This volume reflects very nicely the interaction: the range of topics seems very wide indeed, but the basic problems and techniques are always closely connected. And the common denominator in all of this is, of course, linear algebra. This book is suitable for both mathematicians and students.


The Mathematics of Networks of Linear Systems

The Mathematics of Networks of Linear Systems

Author: Paul A. Fuhrmann

Publisher: Springer

Published: 2015-05-26

Total Pages: 670

ISBN-13: 3319166468

DOWNLOAD EBOOK

This book provides the mathematical foundations of networks of linear control systems, developed from an algebraic systems theory perspective. This includes a thorough treatment of questions of controllability, observability, realization theory, as well as feedback control and observer theory. The potential of networks for linear systems in controlling large-scale networks of interconnected dynamical systems could provide insight into a diversity of scientific and technological disciplines. The scope of the book is quite extensive, ranging from introductory material to advanced topics of current research, making it a suitable reference for graduate students and researchers in the field of networks of linear systems. Part I can be used as the basis for a first course in Algebraic System Theory, while Part II serves for a second, advanced, course on linear systems. Finally, Part III, which is largely independent of the previous parts, is ideally suited for advanced research seminars aimed at preparing graduate students for independent research. “Mathematics of Networks of Linear Systems” contains a large number of exercises and examples throughout the text making it suitable for graduate courses in the area.


Linear Delay-Differential Systems with Commensurate Delays: An Algebraic Approach

Linear Delay-Differential Systems with Commensurate Delays: An Algebraic Approach

Author: Heide Gluesing-Luerssen

Publisher: Springer

Published: 2004-10-19

Total Pages: 183

ISBN-13: 3540455434

DOWNLOAD EBOOK

The book deals with linear time-invariant delay-differential equations with commensurated point delays in a control-theoretic context. The aim is to show that with a suitable algebraic setting a behavioral theory for dynamical systems described by such equations can be developed. The central object is an operator algebra which turns out to be an elementary divisor domain and thus provides the main tool for investigating the corresponding matrix equations. The book also reports the results obtained so far for delay-differential systems with noncommensurate delays. Moreover, whenever possible it points out similarities and differences to the behavioral theory of multidimensional systems, which is based on a great deal of algebraic structure itself. The presentation is introductory and self-contained. It should also be accessible to readers with no background in delay-differential equations or behavioral systems theory. The text should interest researchers and graduate students.


Perspectives in Mathematical System Theory, Control, and Signal Processing

Perspectives in Mathematical System Theory, Control, and Signal Processing

Author: Jan C. Willems

Publisher: Springer

Published: 2010-03-10

Total Pages: 391

ISBN-13: 3540939180

DOWNLOAD EBOOK

This Festschrift, published on the occasion of the sixtieth birthday of Yutaka - mamoto (‘YY’ as he is occasionally casually referred to), contains a collection of articles by friends, colleagues, and former Ph.D. students of YY. They are a tribute to his friendship and his scienti?c vision and oeuvre, which has been a source of inspiration to the authors. Yutaka Yamamoto was born in Kyoto, Japan, on March 29, 1950. He studied applied mathematics and general engineering science at the Department of Applied Mathematics and Physics of Kyoto University, obtaining the B.S. and M.Sc. degrees in 1972 and 1974. His M.Sc. work was done under the supervision of Professor Yoshikazu Sawaragi. In 1974, he went to the Center for Mathematical System T- ory of the University of Florida in Gainesville. He obtained the M.Sc. and Ph.D. degrees, both in Mathematics, in 1976 and 1978, under the direction of Professor Rudolf Kalman.