Algebraic Geometry over the Complex Numbers

Algebraic Geometry over the Complex Numbers

Author: Donu Arapura

Publisher: Springer Science & Business Media

Published: 2012-02-15

Total Pages: 326

ISBN-13: 1461418097

DOWNLOAD EBOOK

This is a relatively fast paced graduate level introduction to complex algebraic geometry, from the basics to the frontier of the subject. It covers sheaf theory, cohomology, some Hodge theory, as well as some of the more algebraic aspects of algebraic geometry. The author frequently refers the reader if the treatment of a certain topic is readily available elsewhere but goes into considerable detail on topics for which his treatment puts a twist or a more transparent viewpoint. His cases of exploration and are chosen very carefully and deliberately. The textbook achieves its purpose of taking new students of complex algebraic geometry through this a deep yet broad introduction to a vast subject, eventually bringing them to the forefront of the topic via a non-intimidating style.


Geometry of Complex Numbers

Geometry of Complex Numbers

Author: Hans Schwerdtfeger

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 228

ISBN-13: 0486135861

DOWNLOAD EBOOK

Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.


Complex Numbers in Geometry

Complex Numbers in Geometry

Author: I. M. Yaglom

Publisher: Academic Press

Published: 2014-05-12

Total Pages: 256

ISBN-13: 148326663X

DOWNLOAD EBOOK

Complex Numbers in Geometry focuses on the principles, interrelations, and applications of geometry and algebra. The book first offers information on the types and geometrical interpretation of complex numbers. Topics include interpretation of ordinary complex numbers in the Lobachevskii plane; double numbers as oriented lines of the Lobachevskii plane; dual numbers as oriented lines of a plane; most general complex numbers; and double, hypercomplex, and dual numbers. The text then takes a look at circular transformations and circular geometry, including ordinary circular transformations, axial circular transformations of the Lobachevskii plane, circular transformations of the Lobachevskii plane, axial circular transformations, and ordinary circular transformations. The manuscript is intended for pupils in high schools and students in the mathematics departments of universities and teachers' colleges. The publication is also useful in the work of mathematical societies and teachers of mathematics in junior high and high schools.


Algebraic Geometry

Algebraic Geometry

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 511

ISBN-13: 1475738498

DOWNLOAD EBOOK

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.


Complex Geometry

Complex Geometry

Author: Daniel Huybrechts

Publisher: Springer Science & Business Media

Published: 2005

Total Pages: 336

ISBN-13: 9783540212904

DOWNLOAD EBOOK

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)


Hodge Theory and Complex Algebraic Geometry I:

Hodge Theory and Complex Algebraic Geometry I:

Author: Claire Voisin

Publisher: Cambridge University Press

Published: 2007-12-20

Total Pages: 334

ISBN-13: 9780521718011

DOWNLOAD EBOOK

This is a modern introduction to Kaehlerian geometry and Hodge structure. Coverage begins with variables, complex manifolds, holomorphic vector bundles, sheaves and cohomology theory (with the latter being treated in a more theoretical way than is usual in geometry). The book culminates with the Hodge decomposition theorem. In between, the author proves the Kaehler identities, which leads to the hard Lefschetz theorem and the Hodge index theorem. The second part of the book investigates the meaning of these results in several directions.


Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces

Author: Rick Miranda

Publisher: American Mathematical Soc.

Published: 1995

Total Pages: 414

ISBN-13: 0821802682

DOWNLOAD EBOOK

In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.


Basic Algebraic Geometry 2

Basic Algebraic Geometry 2

Author: Igor Rostislavovich Shafarevich

Publisher: Springer Science & Business Media

Published: 1994

Total Pages: 292

ISBN-13: 9783540575542

DOWNLOAD EBOOK

The second volume of Shafarevich's introductory book on algebraic geometry focuses on schemes, complex algebraic varieties and complex manifolds. As with Volume 1 the author has revised the text and added new material, e.g. a section on real algebraic curves. Although the material is more advanced than in Volume 1 the algebraic apparatus is kept to a minimum making the book accessible to non-specialists. It can be read independently of Volume 1 and is suitable for beginning graduate students in mathematics as well as in theoretical physics.


Complex Analysis and Algebraic Geometry

Complex Analysis and Algebraic Geometry

Author: Kunihiko Kodaira

Publisher: CUP Archive

Published: 1977

Total Pages: 424

ISBN-13: 9780521217774

DOWNLOAD EBOOK

The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.


Geometric Invariant Theory

Geometric Invariant Theory

Author: Nolan R. Wallach

Publisher: Springer

Published: 2017-09-08

Total Pages: 199

ISBN-13: 3319659073

DOWNLOAD EBOOK

Geometric Invariant Theory (GIT) is developed in this text within the context of algebraic geometry over the real and complex numbers. This sophisticated topic is elegantly presented with enough background theory included to make the text accessible to advanced graduate students in mathematics and physics with diverse backgrounds in algebraic and differential geometry. Throughout the book, examples are emphasized. Exercises add to the reader’s understanding of the material; most are enhanced with hints. The exposition is divided into two parts. The first part, ‘Background Theory’, is organized as a reference for the rest of the book. It contains two chapters developing material in complex and real algebraic geometry and algebraic groups that are difficult to find in the literature. Chapter 1 emphasizes the relationship between the Zariski topology and the canonical Hausdorff topology of an algebraic variety over the complex numbers. Chapter 2 develops the interaction between Lie groups and algebraic groups. Part 2, ‘Geometric Invariant Theory’ consists of three chapters (3–5). Chapter 3 centers on the Hilbert–Mumford theorem and contains a complete development of the Kempf–Ness theorem and Vindberg’s theory. Chapter 4 studies the orbit structure of a reductive algebraic group on a projective variety emphasizing Kostant’s theory. The final chapter studies the extension of classical invariant theory to products of classical groups emphasizing recent applications of the theory to physics.