Algebraic Curves in Cryptography

Algebraic Curves in Cryptography

Author: San Ling

Publisher: CRC Press

Published: 2013-06-13

Total Pages: 340

ISBN-13: 1420079476

DOWNLOAD EBOOK

The reach of algebraic curves in cryptography goes far beyond elliptic curve or public key cryptography yet these other application areas have not been systematically covered in the literature. Addressing this gap, Algebraic Curves in Cryptography explores the rich uses of algebraic curves in a range of cryptographic applications, such as secret sh


Algebraic Curves and Cryptography

Algebraic Curves and Cryptography

Author: Vijaya Kumar Murty

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 142

ISBN-13: 0821843117

DOWNLOAD EBOOK

Focusing on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields the topics covered in this volume include Schoof's $\ell$-adic point counting algorithm, the $p$-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$ curves and zeta functions.


Algebraic Curves and Their Applications

Algebraic Curves and Their Applications

Author: Lubjana Beshaj

Publisher: American Mathematical Soc.

Published: 2019-02-26

Total Pages: 358

ISBN-13: 1470442477

DOWNLOAD EBOOK

This volume contains a collection of papers on algebraic curves and their applications. While algebraic curves traditionally have provided a path toward modern algebraic geometry, they also provide many applications in number theory, computer security and cryptography, coding theory, differential equations, and more. Papers cover topics such as the rational torsion points of elliptic curves, arithmetic statistics in the moduli space of curves, combinatorial descriptions of semistable hyperelliptic curves over local fields, heights on weighted projective spaces, automorphism groups of curves, hyperelliptic curves, dessins d'enfants, applications to Painlevé equations, descent on real algebraic varieties, quadratic residue codes based on hyperelliptic curves, and Abelian varieties and cryptography. This book will be a valuable resource for people interested in algebraic curves and their connections to other branches of mathematics.


Algebraic Curves and Finite Fields

Algebraic Curves and Finite Fields

Author: Harald Niederreiter

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-08-20

Total Pages: 254

ISBN-13: 3110317915

DOWNLOAD EBOOK

Algebra and number theory have always been counted among the most beautiful and fundamental mathematical areas with deep proofs and elegant results. However, for a long time they were not considered of any substantial importance for real-life applications. This has dramatically changed with the appearance of new topics such as modern cryptography, coding theory, and wireless communication. Nowadays we find applications of algebra and number theory frequently in our daily life. We mention security and error detection for internet banking, check digit systems and the bar code, GPS and radar systems, pricing options at a stock market, and noise suppression on mobile phones as most common examples. This book collects the results of the workshops "Applications of algebraic curves" and "Applications of finite fields" of the RICAM Special Semester 2013. These workshops brought together the most prominent researchers in the area of finite fields and their applications around the world. They address old and new problems on curves and other aspects of finite fields, with emphasis on their diverse applications to many areas of pure and applied mathematics.


Algebraic Geometry in Coding Theory and Cryptography

Algebraic Geometry in Coding Theory and Cryptography

Author: Harald Niederreiter

Publisher: Princeton University Press

Published: 2009-09-21

Total Pages: 272

ISBN-13: 140083130X

DOWNLOAD EBOOK

This textbook equips graduate students and advanced undergraduates with the necessary theoretical tools for applying algebraic geometry to information theory, and it covers primary applications in coding theory and cryptography. Harald Niederreiter and Chaoping Xing provide the first detailed discussion of the interplay between nonsingular projective curves and algebraic function fields over finite fields. This interplay is fundamental to research in the field today, yet until now no other textbook has featured complete proofs of it. Niederreiter and Xing cover classical applications like algebraic-geometry codes and elliptic-curve cryptosystems as well as material not treated by other books, including function-field codes, digital nets, code-based public-key cryptosystems, and frameproof codes. Combining a systematic development of theory with a broad selection of real-world applications, this is the most comprehensive yet accessible introduction to the field available. Introduces graduate students and advanced undergraduates to the foundations of algebraic geometry for applications to information theory Provides the first detailed discussion of the interplay between projective curves and algebraic function fields over finite fields Includes applications to coding theory and cryptography Covers the latest advances in algebraic-geometry codes Features applications to cryptography not treated in other books


Elliptic Curves

Elliptic Curves

Author: Lawrence C. Washington

Publisher: CRC Press

Published: 2008-04-03

Total Pages: 533

ISBN-13: 1420071475

DOWNLOAD EBOOK

Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application


Algebraic Geometry for Coding Theory and Cryptography

Algebraic Geometry for Coding Theory and Cryptography

Author: Everett W. Howe

Publisher: Springer

Published: 2017-11-15

Total Pages: 160

ISBN-13: 3319639315

DOWNLOAD EBOOK

Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.


Algebraic Aspects of Cryptography

Algebraic Aspects of Cryptography

Author: Neal Koblitz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 214

ISBN-13: 3662036428

DOWNLOAD EBOOK

From the reviews: "This is a textbook in cryptography with emphasis on algebraic methods. It is supported by many exercises (with answers) making it appropriate for a course in mathematics or computer science. [...] Overall, this is an excellent expository text, and will be very useful to both the student and researcher." Mathematical Reviews


Elliptic Curves in Cryptography

Elliptic Curves in Cryptography

Author: Ian F. Blake

Publisher: Cambridge University Press

Published: 1999-07-08

Total Pages: 228

ISBN-13: 9780521653749

DOWNLOAD EBOOK

This book summarizes knowledge built up within Hewlett-Packard over a number of years, and explains the mathematics behind practical implementations of elliptic curve systems. Due to the advanced nature of the mathematics there is a high barrier to entry for individuals and companies to this technology. Hence this book will be invaluable not only to mathematicians wanting to see how pure mathematics can be applied but also to engineers and computer scientists wishing (or needing) to actually implement such systems.