Algebraic Constructions of High Performance and Efficiently Encodable Non-binary Quasi-cyclic LDPC Codes
Author: Bo Zhou
Publisher:
Published: 2008
Total Pages: 292
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Bo Zhou
Publisher:
Published: 2008
Total Pages: 292
ISBN-13:
DOWNLOAD EBOOKAuthor: Todd K. Moon
Publisher: John Wiley & Sons
Published: 2005-06-06
Total Pages: 800
ISBN-13: 0471648000
DOWNLOAD EBOOKAn unparalleled learning tool and guide to error correction coding Error correction coding techniques allow the detection and correction of errors occurring during the transmission of data in digital communication systems. These techniques are nearly universally employed in modern communication systems, and are thus an important component of the modern information economy. Error Correction Coding: Mathematical Methods and Algorithms provides a comprehensive introduction to both the theoretical and practical aspects of error correction coding, with a presentation suitable for a wide variety of audiences, including graduate students in electrical engineering, mathematics, or computer science. The pedagogy is arranged so that the mathematical concepts are presented incrementally, followed immediately by applications to coding. A large number of exercises expand and deepen students' understanding. A unique feature of the book is a set of programming laboratories, supplemented with over 250 programs and functions on an associated Web site, which provides hands-on experience and a better understanding of the material. These laboratories lead students through the implementation and evaluation of Hamming codes, CRC codes, BCH and R-S codes, convolutional codes, turbo codes, and LDPC codes. This text offers both "classical" coding theory-such as Hamming, BCH, Reed-Solomon, Reed-Muller, and convolutional codes-as well as modern codes and decoding methods, including turbo codes, LDPC codes, repeat-accumulate codes, space time codes, factor graphs, soft-decision decoding, Guruswami-Sudan decoding, EXIT charts, and iterative decoding. Theoretical complements on performance and bounds are presented. Coding is also put into its communications and information theoretic context and connections are drawn to public key cryptosystems. Ideal as a classroom resource and a professional reference, this thorough guide will benefit electrical and computer engineers, mathematicians, students, researchers, and scientists.
Author: David Tse
Publisher: Cambridge University Press
Published: 2005-05-26
Total Pages: 598
ISBN-13: 9780521845274
DOWNLOAD EBOOKThis textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.
Author: Marc Fossorier
Publisher: Springer
Published: 2006-01-13
Total Pages: 348
ISBN-13: 3540314245
DOWNLOAD EBOOKThe 25 revised full papers presented here together with 7 invited papers address subjects such as block codes; algebra and codes: rings, fields, and AG codes; cryptography; sequences; decoding algorithms; and algebra: constructions in algebra, Galois groups, differential algebra, and polynomials.
Author: Lin Shu
Publisher: Pearson Education India
Published: 2011
Total Pages: 1276
ISBN-13: 9788131734407
DOWNLOAD EBOOKAuthor: William Ryan
Publisher: Cambridge University Press
Published: 2009-09-17
Total Pages: 709
ISBN-13: 1139483013
DOWNLOAD EBOOKChannel coding lies at the heart of digital communication and data storage, and this detailed introduction describes the core theory as well as decoding algorithms, implementation details, and performance analyses. In this book, Professors Ryan and Lin provide clear information on modern channel codes, including turbo and low-density parity-check (LDPC) codes. They also present detailed coverage of BCH codes, Reed-Solomon codes, convolutional codes, finite geometry codes, and product codes, providing a one-stop resource for both classical and modern coding techniques. Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then extend to advanced topics such as code ensemble performance analyses and algebraic code design. 250 varied and stimulating end-of-chapter problems are also included to test and enhance learning, making this an essential resource for students and practitioners alike.
Author: W. Cary Huffman
Publisher: CRC Press
Published: 2021-03-26
Total Pages: 998
ISBN-13: 1351375105
DOWNLOAD EBOOKMost coding theory experts date the origin of the subject with the 1948 publication of A Mathematical Theory of Communication by Claude Shannon. Since then, coding theory has grown into a discipline with many practical applications (antennas, networks, memories), requiring various mathematical techniques, from commutative algebra, to semi-definite programming, to algebraic geometry. Most topics covered in the Concise Encyclopedia of Coding Theory are presented in short sections at an introductory level and progress from basic to advanced level, with definitions, examples, and many references. The book is divided into three parts: Part I fundamentals: cyclic codes, skew cyclic codes, quasi-cyclic codes, self-dual codes, codes and designs, codes over rings, convolutional codes, performance bounds Part II families: AG codes, group algebra codes, few-weight codes, Boolean function codes, codes over graphs Part III applications: alternative metrics, algorithmic techniques, interpolation decoding, pseudo-random sequences, lattices, quantum coding, space-time codes, network coding, distributed storage, secret-sharing, and code-based-cryptography. Features Suitable for students and researchers in a wide range of mathematical disciplines Contains many examples and references Most topics take the reader to the frontiers of research
Author: Bane Vasic
Publisher: CRC Press
Published: 2004-11-09
Total Pages: 742
ISBN-13: 0203490312
DOWNLOAD EBOOKImplementing new architectures and designs for the magnetic recording read channel have been pushed to the limits of modern integrated circuit manufacturing technology. This book reviews advanced coding and signal processing techniques and architectures for magnetic recording systems. Beginning with the basic principles, it examines read/write operations, data organization, head positioning, sensing, timing recovery, data detection, and error correction. It also provides an in-depth treatment of all recording channel subsystems inside a read channel and hard disk drive controller. The final section reviews new trends in coding, particularly emerging codes for recording channels.
Author: Vikram Arkalgud Chandrasetty
Publisher: Academic Press
Published: 2017-12-05
Total Pages: 192
ISBN-13: 0128112565
DOWNLOAD EBOOKThis book takes a practical hands-on approach to developing low complexity algorithms and transforming them into working hardware. It follows a complete design approach – from algorithms to hardware architectures - and addresses some of the challenges associated with their design, providing insight into implementing innovative architectures based on low complexity algorithms.The reader will learn: - Modern techniques to design, model and analyze low complexity LDPC algorithms as well as their hardware implementation - How to reduce computational complexity and power consumption using computer aided design techniques - All aspects of the design spectrum from algorithms to hardware implementation and performance trade-offs - Provides extensive treatment of LDPC decoding algorithms and hardware implementations - Gives a systematic guidance, giving a basic understanding of LDPC codes and decoding algorithms and providing practical skills in implementing efficient LDPC decoders in hardware - Companion website containing C-Programs and MATLAB models for simulating the algorithms, and Verilog HDL codes for hardware modeling and synthesis