Algebraic and Discrete Mathematical Methods for Modern Biology

Algebraic and Discrete Mathematical Methods for Modern Biology

Author: Raina Robeva

Publisher: Academic Press

Published: 2015-05-09

Total Pages: 383

ISBN-13: 0128012714

DOWNLOAD EBOOK

Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources


Algebraic Statistics for Computational Biology

Algebraic Statistics for Computational Biology

Author: L. Pachter

Publisher: Cambridge University Press

Published: 2005-08-22

Total Pages: 440

ISBN-13: 9780521857000

DOWNLOAD EBOOK

This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.


Algebraic and Combinatorial Computational Biology

Algebraic and Combinatorial Computational Biology

Author: Raina Robeva

Publisher: Academic Press

Published: 2018-10-08

Total Pages: 436

ISBN-13: 0128140690

DOWNLOAD EBOOK

Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. - Integrates a comprehensive selection of tools from computational biology into educational or research programs - Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations - Contains scalable material for use in undergraduate and graduate-level classes and research projects - Introduces the reader to freely-available professional software - Supported by illustrative datasets and adaptable computer code


An Introduction to the Mathematics of Biology: with Computer Algebra Models

An Introduction to the Mathematics of Biology: with Computer Algebra Models

Author: Edward K. Yeargers

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 426

ISBN-13: 147571095X

DOWNLOAD EBOOK

Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. Fortunately there are plenty of interesting (and fun) problems in biology, and virtually all scientific disciplines have become the richer for it. For example, two major journals, Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size since their inceptions 20-25 years ago. The various sciences have a great deal to give to one another, but there are still too many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but has a unity of its own, in which both the biology and the math ematics should be equal and complete, and should flow smoothly into and out of one another. We have taught mathematical biology with this philosophy in mind and have seen profound changes in the outlooks of our science and engineering students: The attitude of "Oh no, another pendulum on a spring problem!," or "Yet one more LCD circuit!" completely disappeared in the face of applications of mathematics in biology. There is a timeliness in calculating a protocol for ad ministering a drug.


Applications of Automata Theory and Algebra

Applications of Automata Theory and Algebra

Author: John L. Rhodes

Publisher: World Scientific

Published: 2010

Total Pages: 293

ISBN-13: 9812836969

DOWNLOAD EBOOK

This book was originally written in 1969 by Berkeley mathematician John Rhodes. It is the founding work in what is now called algebraic engineering, an emerging field created by using the unifying scheme of finite state machine models and their complexity to tie together many fields: finite group theory, semigroup theory, automata and sequential machine theory, finite phase space physics, metabolic and evolutionary biology, epistemology, mathematical theory of psychoanalysis, philosophy, and game theory. The author thus introduced a completely original algebraic approach to complexity and the understanding of finite systems. The unpublished manuscript, often referred to as "The Wild Book," became an underground classic, continually requested in manuscript form, and read by many leading researchers in mathematics, complex systems, artificial intelligence, and systems biology. Yet it has never been available in print until now. This first published edition has been edited and updated by Chrystopher Nehaniv for the 21st century. Its novel and rigorous development of the mathematical theory of complexity via algebraic automata theory reveals deep and unexpected connections between algebra (semigroups) and areas of science and engineering. Co-founded by John Rhodes and Kenneth Krohn in 1962, algebraic automata theory has grown into a vibrant area of research, including the complexity of automata, and semigroups and machines from an algebraic viewpoint, and which also touches on infinite groups, and other areas of algebra. This book sets the stage for the application of algebraic automata theory to areas outside mathematics. The material and references have been brought up to date bythe editor as much as possible, yet the book retains its distinct character and the bold yet rigorous style of the author. Included are treatments of topics such as models of time as algebra via semigroup theory; evolution-complexity relations applicable to both ontogeny and evolution; an approach to classification of biological reactions and pathways; the relationships among coordinate systems, symmetry, and conservation principles in physics; discussion of "punctuated equilibrium" (prior to Stephen Jay Gould); games; and applications to psychology, psychoanalysis, epistemology, and the purpose of life. The approach and contents will be of interest to a variety of researchers and students in algebra as well as to the diverse, growing areas of applications of algebra in science and engineering. Moreover, many parts of the book will be intelligible to non-mathematicians, including students and experts from diverse backgrounds.


Mathematical Concepts and Methods in Modern Biology

Mathematical Concepts and Methods in Modern Biology

Author: Raina Robeva

Publisher: Academic Press

Published: 2013-02-26

Total Pages: 373

ISBN-13: 0124157939

DOWNLOAD EBOOK

Mathematical Concepts and Methods in Modern Biology offers a quantitative framework for analyzing, predicting, and modulating the behavior of complex biological systems. The book presents important mathematical concepts, methods and tools in the context of essential questions raised in modern biology.Designed around the principles of project-based learning and problem-solving, the book considers biological topics such as neuronal networks, plant population growth, metabolic pathways, and phylogenetic tree reconstruction. The mathematical modeling tools brought to bear on these topics include Boolean and ordinary differential equations, projection matrices, agent-based modeling and several algebraic approaches. Heavy computation in some of the examples is eased by the use of freely available open-source software. - Features self-contained chapters with real biological research examples using freely available computational tools - Spans several mathematical techniques at basic to advanced levels - Offers broad perspective on the uses of algebraic geometry/polynomial algebra in molecular systems biology


Advances in Artificial Systems for Logistics Engineering

Advances in Artificial Systems for Logistics Engineering

Author: Zhengbing Hu

Publisher: Springer Nature

Published: 2022-04-28

Total Pages: 735

ISBN-13: 3031048091

DOWNLOAD EBOOK

The book comprises high-quality refereed research papers presented at the Second International Conference on Artificial Intelligence and Logistics Engineering (ICAILE2022), held in Kyiv, Ukraine, on February 20–22, 2022, organized jointly by the National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute," Wuhan University of Technology, Nanning University, National Aviation University, and the International Research Association of Modern Education and Computer Science. The topics discussed in the book include state-of-the-art papers in artificial intelligence and logistics engineering. It is an excellent source of references for researchers, graduate students, engineers, management practitioners, and undergraduate students interested in artificial intelligence and its applications in logistics engineering.


Mathematical Biology

Mathematical Biology

Author: Ronald W. Shonkwiler

Publisher: Springer Science & Business Media

Published: 2009-08-04

Total Pages: 552

ISBN-13: 0387709843

DOWNLOAD EBOOK

This text presents mathematical biology as a field with a unity of its own, rather than only the intrusion of one science into another. The book focuses on problems of contemporary interest, such as cancer, genetics, and the rapidly growing field of genomics.


A Course in Mathematical Biology

A Course in Mathematical Biology

Author: Gerda de Vries

Publisher: SIAM

Published: 2006-07-01

Total Pages: 307

ISBN-13: 0898718252

DOWNLOAD EBOOK

This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.