For the first time, this book unites different algebraic approaches for discrete optimization and operations research. The presentation of some fundamental directions of this new fast developing area shows the wide range of its applicability.Specifically, the book contains contributions in the following fields: semigroup and semiring theory applied to combinatorial and integer programming, network flow theory in ordered algebraic structures, extremal optimization problems, decomposition principles for discrete structures, Boolean methods in graph theory and applications.
Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. - Integrates a comprehensive selection of tools from computational biology into educational or research programs - Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations - Contains scalable material for use in undergraduate and graduate-level classes and research projects - Introduces the reader to freely-available professional software - Supported by illustrative datasets and adaptable computer code
One ofthe most important aspects in research fields where mathematics is "applied is the construction of a formal model of a real system. As for structural relations, graphs have turned out to provide the most appropriate tool for setting up the mathematical model. This is certainly one of the reasons for the rapid expansion in graph theory during the last decades. Furthermore, in recent years it also became clear that the two disciplines of graph theory and computer science have very much in common, and that each one has been capable of assisting significantly in the development of the other. On one hand, graph theorists have found that many of their problems can be solved by the use of com puting techniques, and on the other hand, computer scientists have realized that many of their concepts, with which they have to deal, may be conveniently expressed in the lan guage of graph theory, and that standard results in graph theory are often very relevant to the solution of problems concerning them. As a consequence, a tremendous number of publications has appeared, dealing with graphtheoretical problems from a computational point of view or treating computational problems using graph theoretical concepts.
The range of random graph topics covered in this volume includes structure, colouring, algorithms, mappings, trees, network flows, and percolation. The papers also illustrate the application of probability methods to Ramsey's problems, the application of graph theory methods to probability, and relations between games on graphs and random graphs.
In this book, the following three approaches to data analysis are presented: - Test Theory, founded by Sergei V. Yablonskii (1924-1998); the first publications appeared in 1955 and 1958, - Rough Sets, founded by Zdzisław I. Pawlak (1926-2006); the first publications appeared in 1981 and 1982, - Logical Analysis of Data, founded by Peter L. Hammer (1936-2006); the first publications appeared in 1986 and 1988. These three approaches have much in common, but researchers active in one of these areas often have a limited knowledge about the results and methods developed in the other two. On the other hand, each of the approaches shows some originality and we believe that the exchange of knowledge can stimulate further development of each of them. This can lead to new theoretical results and real-life applications and, in particular, new results based on combination of these three data analysis approaches can be expected. - Logical Analysis of Data, founded by Peter L. Hammer (1936-2006); the first publications appeared in 1986 and 1988. These three approaches have much in common, but researchers active in one of these areas often have a limited knowledge about the results and methods developed in the other two. On the other hand, each of the approaches shows some originality and we believe that the exchange of knowledge can stimulate further development of each of them. This can lead to new theoretical results and real-life applications and, in particular, new results based on combination of these three data analysis approaches can be expected. These three approaches have much in common, but researchers active in one of these areas often have a limited knowledge about the results and methods developed in the other two. On the other hand, each of the approaches shows some originality and we believe that the exchange of knowledge can stimulate further development of each of them. This can lead to new theoretical results and real-life applications and, in particular, new results based on combination of these three data analysis approaches can be expected.
In the summer of 1956, John McCarthy organized the famous Dartmouth Conference which is now commonly viewed as the founding event for the field of Artificial Intelligence. During the last 50 years, AI has seen a tremendous development and is now a well-established scientific discipline all over the world. Also in Europe AI is in excellent shape, as witnessed by the large number of high quality papers in this publication. In comparison with ECAI 2004, there’s a strong increase in the relative number of submissions from Distributed AI / Agents and Cognitive Modelling. Knowledge Representation & Reasoning is traditionally strong in Europe and remains the biggest area of ECAI-06. One reason the figures for Case-Based Reasoning are rather low is that much of the high quality work in this area has found its way into prestigious applications and is thus represented under the heading of PAIS.
The primary objective of this essential text is to emphasize the deep relations existing between the semiring and dioïd structures with graphs and their combinatorial properties. It does so at the same time as demonstrating the modeling and problem-solving flexibility of these structures. In addition the book provides an extensive overview of the mathematical properties employed by "nonclassical" algebraic structures which either extend usual algebra or form a new branch of it.