AI-Enabled Analytics for Business

AI-Enabled Analytics for Business

Author: Lawrence S. Maisel

Publisher: John Wiley & Sons

Published: 2022-01-19

Total Pages: 243

ISBN-13: 1119736080

DOWNLOAD EBOOK

We are entering the era of digital transformation where human and artificial intelligence (AI) work hand in hand to achieve data driven performance. Today, more than ever, businesses are expected to possess the talent, tools, processes, and capabilities to enable their organizations to implement and utilize continuous analysis of past business performance and events to gain forward-looking insight to drive business decisions and actions. AI-Enabled Analytics in Business is your Roadmap to meet this essential business capability. To ensure we can plan for the future vs react to the future when it arrives, we need to develop and deploy a toolbox of tools, techniques, and effective processes to reveal forward-looking unbiased insights that help us understand significant patterns, relationships, and trends. This book promotes clarity to enable you to make better decisions from insights about the future. Learn how advanced analytics ensures that your people have the right information at the right time to gain critical insights and performance opportunities Empower better, smarter decision making by implementing AI-enabled analytics decision support tools Uncover patterns and insights in data, and discover facts about your business that will unlock greater performance Gain inspiration from practical examples and use cases showing how to move your business toward AI-Enabled decision making AI-Enabled Analytics in Business is a must-have practical resource for directors, officers, and executives across various functional disciplines who seek increased business performance and valuation.


AI-Enabled Analytics for Business

AI-Enabled Analytics for Business

Author: Lawrence S. Maisel

Publisher: John Wiley & Sons

Published: 2022-01-10

Total Pages: 243

ISBN-13: 1119736099

DOWNLOAD EBOOK

We are entering the era of digital transformation where human and artificial intelligence (AI) work hand in hand to achieve data driven performance. Today, more than ever, businesses are expected to possess the talent, tools, processes, and capabilities to enable their organizations to implement and utilize continuous analysis of past business performance and events to gain forward-looking insight to drive business decisions and actions. AI-Enabled Analytics in Business is your Roadmap to meet this essential business capability. To ensure we can plan for the future vs react to the future when it arrives, we need to develop and deploy a toolbox of tools, techniques, and effective processes to reveal forward-looking unbiased insights that help us understand significant patterns, relationships, and trends. This book promotes clarity to enable you to make better decisions from insights about the future. Learn how advanced analytics ensures that your people have the right information at the right time to gain critical insights and performance opportunities Empower better, smarter decision making by implementing AI-enabled analytics decision support tools Uncover patterns and insights in data, and discover facts about your business that will unlock greater performance Gain inspiration from practical examples and use cases showing how to move your business toward AI-Enabled decision making AI-Enabled Analytics in Business is a must-have practical resource for directors, officers, and executives across various functional disciplines who seek increased business performance and valuation.


Leading with AI and Analytics: Build Your Data Science IQ to Drive Business Value

Leading with AI and Analytics: Build Your Data Science IQ to Drive Business Value

Author: Eric Anderson

Publisher: McGraw Hill Professional

Published: 2020-11-23

Total Pages: 353

ISBN-13: 1260459152

DOWNLOAD EBOOK

Lead your organization to become evidence-driven Data. It’s the benchmark that informs corporate projections, decision-making, and analysis. But, why do many organizations that see themselves as data-driven fail to thrive? In Leading with AI and Analytics, two renowned experts from the Kellogg School of Management show business leaders how to transform their organization to become evidence-driven, which leads to real, measurable changes that can help propel their companies to the top of their industries. The availability of unprecedented technology-enabled tools has made AI (Artificial Intelligence) an essential component of business analytics. But what’s often lacking are the leadership skills to integrate these technologies to achieve maximum value. Here, the authors provide a comprehensive game plan for developing that all-important human factor to get at the heart of data science: the ability to apply analytical thinking to real-world problems. Each of these tools and techniques comes to powerful life through a wealth of powerful case studies and real-world success stories. Inside, you’ll find the essential tools to help you: Develop a strong data science intuition quotient Lead and scale AI and analytics throughout your organization Move from “best-guess” decision making to evidence-based decisions Craft strategies and tactics to create real impact Written for anyone in a leadership or management role—from C-level/unit team managers to rising talent—this powerful, hands-on guide meets today’s growing need for real-world tools to lead and succeed with data.


AI Meets BI

AI Meets BI

Author: Lakshman Bulusu

Publisher: CRC Press

Published: 2020-11-03

Total Pages: 0

ISBN-13: 1000281957

DOWNLOAD EBOOK

With the emergence of Artificial Intelligence (AI) in the business world, a new era of Business Intelligence (BI) has been ushered in to create real-world business solutions using analytics. BI developers and practitioners now have tools and technologies to create systems and solutions to guide effective decision making. Decisions can be made on the basis of more reliable and accurate information and intelligence, which can lead to valuable, actionable insights for business. Previously, BI professionals were stymied by bad or incomplete data, poorly architected solutions, or even just outright incapable systems or resources. With the advent of AI, BI has new possibilities for effectiveness. This is a long-awaited phase for practitioners and developers and, moreover, for executives and leaders relying on knowledgeable and intelligent decision making for their organizations. Beginning with an outline of the traditional methods for implementing BI in the enterprise and how BI has evolved into using self-service analytics, data discovery, and most recently AI, AI Meets BI first lays out the three typical architectures of the first, second, and third generations of BI. It then takes an in-depth look at various types of analytics and highlights how each of these can be implemented using AI-enabled algorithms and deep learning models. The crux of the book is four industry use cases. They describe how an enterprise can access, assess, and perform analytics on data by way of discovering data, defining key metrics that enable the same, defining governance rules, and activating metadata for AI/ML recommendations. Explaining the implementation specifics of each of these four use cases by way of using various AI-enabled machine learning and deep learning algorithms, this book provides complete code for each of the implementations, along with the output of the code, supplemented by visuals that aid in BI-enabled decision making. Concluding with a brief discussion of the cognitive computing aspects of AI, the book looks at future trends, including augmented analytics, automated and autonomous BI, and security and governance of AI-powered BI.


The Organisation of Tomorrow

The Organisation of Tomorrow

Author: Mark Van Rijmenam

Publisher: Routledge

Published: 2019-07-19

Total Pages: 177

ISBN-13: 1000007677

DOWNLOAD EBOOK

The Organisation of Tomorrow presents a new model of doing business and explains how big data analytics, blockchain and artificial intelligence force us to rethink existing business models and develop organisations that will be ready for human-machine interactions. It also asks us to consider the impacts of these emerging information technologies on people and society. Big data analytics empowers consumers and employees. This can result in an open strategy and a better understanding of the changing environment. Blockchain enables peer-to-peer collaboration and trustless interactions governed by cryptography and smart contracts. Meanwhile, artificial intelligence allows for new and different levels of intensity and involvement among human and artificial actors. With that, new modes of organising are emerging: where technology facilitates collaboration between stakeholders; and where human-to-human interactions are increasingly replaced with human-to-machine and even machine-to-machine interactions. This book offers dozens of examples of industry leaders such as Walmart, Telstra, Alibaba, Microsoft and T-Mobile, before presenting the D2 + A2 model – a new model to help organisations datafy their business, distribute their data, analyse it for insights and automate processes and customer touchpoints to be ready for the data-driven and exponentially-changing society that is upon us This book offers governments, professional services, manufacturing, finance, retail and other industries a clear approach for how to develop products and services that are ready for the twenty-first century. It is a must-read for every organisation that wants to remain competitive in our fast-changing world.


Competing in the Age of AI

Competing in the Age of AI

Author: Marco Iansiti

Publisher: Harvard Business Press

Published: 2020-01-07

Total Pages: 175

ISBN-13: 1633697630

DOWNLOAD EBOOK

"a provocative new book" — The New York Times AI-centric organizations exhibit a new operating architecture, redefining how they create, capture, share, and deliver value. Now with a new preface that explores how the coronavirus crisis compelled organizations such as Massachusetts General Hospital, Verizon, and IKEA to transform themselves with remarkable speed, Marco Iansiti and Karim R. Lakhani show how reinventing the firm around data, analytics, and AI removes traditional constraints on scale, scope, and learning that have restricted business growth for hundreds of years. From Airbnb to Ant Financial, Microsoft to Amazon, research shows how AI-driven processes are vastly more scalable than traditional processes, allow massive scope increase, enabling companies to straddle industry boundaries, and create powerful opportunities for learning—to drive ever more accurate, complex, and sophisticated predictions. When traditional operating constraints are removed, strategy becomes a whole new game, one whose rules and likely outcomes this book will make clear. Iansiti and Lakhani: Present a framework for rethinking business and operating models Explain how "collisions" between AI-driven/digital and traditional/analog firms are reshaping competition, altering the structure of our economy, and forcing traditional companies to rearchitect their operating models Explain the opportunities and risks created by digital firms Describe the new challenges and responsibilities for the leaders of both digital and traditional firms Packed with examples—including many from the most powerful and innovative global, AI-driven competitors—and based on research in hundreds of firms across many sectors, this is your essential guide for rethinking how your firm competes and operates in the era of AI.


Artificial Intelligence

Artificial Intelligence

Author: Harvard Business Review

Publisher: HBR Insights

Published: 2019

Total Pages: 160

ISBN-13: 9781633697898

DOWNLOAD EBOOK

Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.


Data Analytics and AI

Data Analytics and AI

Author: Jay Liebowitz

Publisher: CRC Press

Published: 2020-08-06

Total Pages: 187

ISBN-13: 1000094677

DOWNLOAD EBOOK

Analytics and artificial intelligence (AI), what are they good for? The bandwagon keeps answering, absolutely everything! Analytics and artificial intelligence have captured the attention of everyone from top executives to the person in the street. While these disciplines have a relatively long history, within the last ten or so years they have exploded into corporate business and public consciousness. Organizations have rushed to embrace data-driven decision making. Companies everywhere are turning out products boasting that "artificial intelligence is included." We are indeed living in exciting times. The question we need to ask is, do we really know how to get business value from these exciting tools? Unfortunately, both the analytics and AI communities have not done a great job in collaborating and communicating with each other to build the necessary synergies. This book bridges the gap between these two critical fields. The book begins by explaining the commonalities and differences in the fields of data science, artificial intelligence, and autonomy by giving a historical perspective for each of these fields, followed by exploration of common technologies and current trends in each field. The book also readers introduces to applications of deep learning in industry with an overview of deep learning and its key architectures, as well as a survey and discussion of the main applications of deep learning. The book also presents case studies to illustrate applications of AI and analytics. These include a case study from the healthcare industry and an investigation of a digital transformation enabled by AI and analytics transforming a product-oriented company into one delivering solutions and services. The book concludes with a proposed AI-informed data analytics life cycle to be applied to unstructured data.