The world population is expected to increase exponentially within the next decade, which means that the food demand will increase and so will waste production. There is a need for effective food waste management as wasted food leads to overutilization of water and fossil fuels and increasing greenhouse gas emissions from the degradation of food. Global Initiatives for Waste Reduction and Cutting Food Loss explores methods for reducing waste and cutting food loss in order to help the environment and support local communities, as well as solve issues including that of land space. Covering topics that include food degradation, enzymes, and microorganisms, this publication is designed for policymakers, environmentalists, engineers, government officials, researchers, scientists, academicians, and students.
This edited book provides a comprehensive review of the current agricultural waste disposal techniques focusing on the ongoing research in the production of various agro waste-derived value-added products. Further topic includes the techno-economic aspects in up-scaling the technology from lab scale to commercial/pilot scale. Sustainable waste management and alternative renewable energy sources are the most important requirements in this era of rapid industrialization and urbanization. Agricultural waste, which is one of the major contributors to overall waste production, has the ability to be an essential source of renewable energy and other valuable products. The ongoing research and technical advancements in agro-waste treatment lead to the efficient conversion of waste into different value-added products. This book is of primary interest to academicians, researchers, scientists and engineers working in the field of agro-residue management, and biomass to bio-energy conversion technologies. Also, the book serves as reading material for students of Environmental Engineering/Civil and Environmental Engineering and Agricultural Engineering. Rural Management authorities, Industrial and Government policy-making agencies may also find it useful read.
G.HAINNAUX Departement Milieu et Activites Agricoles, Centre ORSTOM, 911 Avenue d' Agropolis, B.P. 5045, 34032 Montpellier Cedex , France. Solid state fermentation, popularly abbreviated as SSF, is currently investigated by many groups throughout the world. The study of this technique was largely neglected in the past in European and Western countries and there is now a high demand for SSF, meaning in food, environment, agricultural, phannaceutical and many other biotechnological applications. It gives me satisfaction to note that the importance of this technique was realised at my department way back in 1975 since then, our team has put concentrated efforts on developing this technique. xvii Foreword Advances in Solid State Fermentation Foreword M. PUYGRENIER Agropolis Valorisation, Avenue d' Agropolis, 34394 Montpellier Cedex 5, France. On the name of the Scientific Community, I would like to express the wish that this International Symposium on SSF should be successful. Solid State Fermentation is part of biotechnology research. It consists on seeding solid culture medium with bacteria or fungi (filamentous or higher) and on producing, in this medium (solid components and exudates) metabolites and high value products. In fact, this process is very old. In older industries such the food and agricultural, this technique has been extensively used. An example of this is the production of pork sausages and Roquefort cheese. Pharmaceutical industry could make extensive use of SSF in the production of secondary metabolites of many kinds and development in this direction is soon expected.
HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.
Biotransformation of Agricultural Waste and By-Products in the 4F Economy: The Food, Feed, Fiber, Fuel (4F) Economy presents an evaluation of plant species better exploitable for a particular transformation. As crops are already covering large parts of cultivable soils, is it is not conceivable to try to extend the cultures beyond the limit of available soils, but a further increase in productivity is not easy to obtain. The book discusses advances in technology and plants design which support the exploitation and valorization of vegetable and fruit by-products through fermentation (feed-batch liquid fermentation, solid-state fermentation) in bio-based bio-chemicals/biofuels production. Pathways in the biosynthesis of fibers, sugars, and metabolites are provided with a focus on the lifecycle of bacteria, yeasts, and even plant species. The text analyzes cellular structures and the organization of cell walls in order to show which polysaccharides offer more favorable fermentative processes and which are detrimental. - Provides an overview of all plant based biosources - Includes examples of biochemical/biofuel production from plant waste - Discusses the production of enzymes used in the plant fermentation processes - Explores the new fermentation technologies and production of chemicals and fuels from various plants
This book explores the concept and methods of waste management with a new approach of biological valorization. Waste valorization is a process that aims to reduce, reuse, and recycle the waste into usable, value-added, and environmental benign raw materials which can be a source of energy. The book brings together comprehensive information to assert that waste can be converted into a resource or a raw material for value addition. Waste valorization imbibes the natural recycling principles of zero waste, loop closing, and underlines the importance of sustainable and environmentally friendly alternatives. Drawing upon research and examples from around the world, the book is offering an up-to-date account, and insight into the contours of waste valorization principles, biovalorization technologies for diverse group of wastes including agricultural, municipal, and industrial waste. It further discusses the emerging paradigms of waste valorization, waste biorefineries, valorization technologies for energy, biofuel, and biochemical production. The book meets the growing global needs for a comprehensive and holistic outlook on waste management. It is of interest to teachers, researchers, scientists, capacity builders and policymakers. Also, the book serves as additional reading material for undergraduate and graduate students of biotechnology and environmental sciences.
A complete guide to the evolving methods by which we may recover by-products and significantly reduce food waste Across the globe, one third of cereals and almost half of all fruits and vegetables go to waste. The cost of such waste – both to economies and to the environment – is a serious and increasing concern within the food industry. If we are to overcome this crisis and move towards a sustainable future, we must do everything possible to utilize innovative new methods of extracting and processing valuable by-products of all kinds. Food Wastes and By-products represents a complete primer to this important and complex process. Edited and written by leading researchers, the text provides essential information on the supply of waste and its composition, identifies foods rich in valuable bioactive compounds, and explores revolutionary methods for creating by-products from fruit, vegetable, and seed waste. Other chapters discuss the nutraceutical properties of value-added by-products and their uses in the manufacturing of dietary fibers, food flavors, supplements, pectin, and more. This book: Explains how reconstituted by-products can best be used to radically reduce food waste Discusses the potential nutraceutical assets of recovered food waste Covers a broad range of by-product sources, such as mangos, cacao, flaxseed, and spent coffee grounds Describes novel extraction processes and the emerging use of nanotechnology A significant contribution to the field, Food Wastes and By-products is a timely and essential resource for food industry professionals, government agencies and NGOs involved in nutrition, agriculture, and food production, and university instructors and students in related areas.
Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges addresses the waste and by-product valorization of fruits and vegetables, beverages, nuts and seeds, dairy and seafood. The book focuses its coverage on bioactive recovery, health benefits, biofuel production and environment issues, as well as recent technological developments surrounding state of the art of food waste management and innovation. The book also presents tools for value chain analysis and explores future sustainability challenges. In addition, the book offers theoretical and experimental information used to investigate different aspects of the valorization of agri-food wastes and by-products. Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges will be a great resource for food researchers, including those working in food loss or waste, agricultural processing, and engineering, food scientists, technologists, agricultural engineers, and students and professionals working on sustainable food production and effective management of food loss, wastes and by-products. Covers recent trends, innovations, and sustainability challenges related to food wastes and by-products valorization Explores various recovery processes, the functionality of targeted bioactive compounds, and green processing technologies Presents emerging technologies for the valorization of agri-food wastes and by-products Highlights potential industrial applications of food wastes and by-products to support circular economy concepts
A rapidly growing population, industrialization, modernization, luxury life style, and overall urbanization are associated with the generation of enhanced wastes. The inadequate management of the ever-growing amount of waste has degraded the quality of the natural resources on a regional, state, and country basis, and consequently threatens public health as well as global environmental security. Therefore, there is an existent demand for the improvement of sustainable, efficient, and low-cost technologies to monitor and properly manage the huge quantities of waste and convert these wastes into energy sources. Innovative Waste Management Technologies for Sustainable Development is an essential reference source that discusses management of different types of wastes and provides relevant theoretical frameworks about new waste management technologies for the control of air, water, and soil pollution. This publication also explores the innovative concept of waste-to-energy and its application in safeguarding the environment. Featuring research on topics such as pollution management, vermicomposting, and crude dumping, this book is ideally designed for environmentalists, policymakers, professionals, researchers, scientists, industrialists, and environmental agencies.