Affine Lie Algebras and Quantum Groups

Affine Lie Algebras and Quantum Groups

Author: Jürgen Fuchs

Publisher: Cambridge University Press

Published: 1995-03-09

Total Pages: 452

ISBN-13: 9780521484121

DOWNLOAD EBOOK

This is an introduction to the theory of affine Lie Algebras, to the theory of quantum groups, and to the interrelationships between these two fields that are encountered in conformal field theory.


Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups

Author: Toshiaki Shoji

Publisher: American Mathematical Society(RI)

Published: 2004

Total Pages: 514

ISBN-13:

DOWNLOAD EBOOK

A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.


Lie Algebras of Finite and Affine Type

Lie Algebras of Finite and Affine Type

Author: Roger William Carter

Publisher: Cambridge University Press

Published: 2005-10-27

Total Pages: 662

ISBN-13: 9780521851381

DOWNLOAD EBOOK

This book provides a thorough but relaxed mathematical treatment of Lie algebras.


Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification

Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification

Author: Jacob Greenstein

Publisher: Birkhäuser

Published: 2023-03-12

Total Pages: 0

ISBN-13: 9783030638511

DOWNLOAD EBOOK

This volume collects chapters that examine representation theory as connected with affine Lie algebras and their quantum analogues, in celebration of the impact Vyjayanthi Chari has had on this area. The opening chapters are based on mini-courses given at the conference “Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification”, held on the occasion of Chari’s 60th birthday at the Catholic University of America in Washington D.C., June 2018. The chapters that follow present a broad view of the area, featuring surveys, original research, and an overview of Vyjayanthi Chari’s significant contributions. Written by distinguished experts in representation theory, a range of topics are covered, including: String diagrams and categorification Quantum affine algebras and cluster algebras Steinberg groups for Jordan pairs Dynamical quantum determinants and Pfaffians Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification will be an ideal resource for researchers in the fields of representation theory and mathematical physics.


Tensor Categories

Tensor Categories

Author: Pavel Etingof

Publisher: American Mathematical Soc.

Published: 2016-08-05

Total Pages: 362

ISBN-13: 1470434415

DOWNLOAD EBOOK

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.


Symmetries, Lie Algebras and Representations

Symmetries, Lie Algebras and Representations

Author: Jürgen Fuchs

Publisher: Cambridge University Press

Published: 2003-10-07

Total Pages: 464

ISBN-13: 9780521541190

DOWNLOAD EBOOK

This book gives an introduction to Lie algebras and their representations. Lie algebras have many applications in mathematics and physics, and any physicist or applied mathematician must nowadays be well acquainted with them.


Quantum Groups

Quantum Groups

Author: Christian Kassel

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 540

ISBN-13: 1461207835

DOWNLOAD EBOOK

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.


Fifty Years of Mathematical Physics

Fifty Years of Mathematical Physics

Author: Molin Ge

Publisher: World Scientific Publishing Company

Published: 2016-02-16

Total Pages: 596

ISBN-13: 9814340960

DOWNLOAD EBOOK

This unique volume summarizes with a historical perspective several of the major scientific achievements of Ludwig Faddeev, with a foreword by Nobel Laureate C N Yang. The volume that spans over fifty years of Faddeev's career begins where he started his own scientific research, in the subject of scattering theory and the three-body problem. It then continues to describe Faddeev's contributions to automorphic functions, followed by an extensive account of his many fundamental contributions to quantum field theory including his original article on ghosts with Popov. Faddeev's contributions to soliton theory and integrable models are then described, followed by a survey of his work on quantum groups. The final scientific section is devoted to Faddeev's contemporary research including articles on his long-term interest in constructing knotted solitons and understanding confinement. The volume concludes with his personal view on science and mathematical physics in particular.


Quantum Groups in Two-Dimensional Physics

Quantum Groups in Two-Dimensional Physics

Author: Cisar Gómez

Publisher: Cambridge University Press

Published: 1996-04-18

Total Pages: 477

ISBN-13: 0521460654

DOWNLOAD EBOOK

A 1996 introduction to integrability and conformal field theory in two dimensions using quantum groups.


A Guide to Quantum Groups

A Guide to Quantum Groups

Author: Vyjayanthi Chari

Publisher: Cambridge University Press

Published: 1995-07-27

Total Pages: 672

ISBN-13: 9780521558846

DOWNLOAD EBOOK

Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.