There has been revived interest in recent years in the study of special functions. Many of the latest advances in the field were inspired by the works of R. A. Askey and colleagues on basic hypergeometric series and I. G. Macdonald on orthogonal polynomials related to root systems. Significant progress was made by the use of algebraic techniques involving quantum groups, Hecke algebras, and combinatorial methods. The CRM organized a workshop for key researchers in the field to present an overview of current trends. This volume consists of the contributions to that workshop. Topics include basic hypergeometric functions, algebraic and representation-theoretic methods, combinatorics of symmetric functions, root systems, and the connections with integrable systems.
This new book presents research in orthogonal polynomials and special functions. Recent developments in the theory and accomplishments of the last decade are pointed out and directions for research in the future are identified. The topics covered include matrix orthogonal polynomials, spectral theory and special functions, Asymptotics for orthogonal polynomials via Riemann-Hilbert methods, Polynomial wavelets and Koornwinder polynomials.
Two basic problems of representation theory are to classify irreducible representations and decompose representations occuring naturally in some other context. Algebras of Iwahori-Hecke type are one of the tools and were, probably, first considered in the context of representation theory of finite groups of Lie type. This volume consists of notes of the courses on Iwahori-Hecke algebras and their representation theory, given during the CIME summer school which took place in 1999 in Martina Franca, Italy.
This is the second of three volumes that form the Encyclopedia of Special Functions, an extensive update of the Bateman Manuscript Project. Volume 2 covers multivariable special functions. When the Bateman project appeared, study of these was in an early stage, but revolutionary developments began to be made in the 1980s and have continued ever since. World-renowned experts survey these over the course of 12 chapters, each containing an extensive bibliography. The reader encounters different perspectives on a wide range of topics, from Dunkl theory, to Macdonald theory, to the various deep generalizations of classical hypergeometric functions to the several variables case, including the elliptic level. Particular attention is paid to the close relation of the subject with Lie theory, geometry, mathematical physics and combinatorics.
Invited articles by top notch experts Focus is on topics in representation theory of algebraic groups and quantum groups Of interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics
In recent years, there has been an increased interest in exploring the connections between various disciplines of mathematics and theoretical physics such as representation theory, algebraic geometry, quantum field theory, and string theory. One of the challenges of modern mathematical physics is to understand rigorously the idea of quantization. The program of quantization by branes, which comes from string theory, is explored in the book. This open access book provides a detailed description of the geometric approach to the representation theory of the double affine Hecke algebra (DAHA) of rank one. Spherical DAHA is known to arise from the deformation quantization of the moduli space of SL(2,C) flat connections on the punctured torus. The authors demonstrate the study of the topological A-model on this moduli space and establish a correspondence between Lagrangian branes of the A-model and DAHA modules. The finite-dimensional DAHA representations are shown to be in one-to-one correspondence with the compact Lagrangian branes. Along the way, the authors discover new finite-dimensional indecomposable representations. They proceed to embed the A-model story in an M-theory brane construction, closely related to the one used in the 3d/3d correspondence; as a result, modular tensor categories behind particular finite-dimensional representations with PSL(2,Z) action are identified. The relationship of Coulomb branch geometry and algebras of line operators in 4d N = 2* theories to the double affine Hecke algebra is studied further by using a further connection to the fivebrane system for the class S construction. The book is targeted at experts in mathematical physics, representation theory, algebraic geometry, and string theory. This is an open access book.
The Third European Congress of Mathematics (3ecm) took place from July 10th to July 14th, 2000 in Barcelona. It was organised by the Societat Catalana de Matematiques (Catalan Mathematical Society), under the auspices of the Euro- pean Mathematical Society (EMS). As foreseen by the EMS and the International Mathematical Union, this Congress was a major event in World Mathematical Year 2000. In addition to reviewing outstanding research achievements, important aspects of the life of European mathematics were discussed. Mathematics is undergoing a period of rapid changes. Effective computation and applications in science and technology go ever more hand in hand with con- ceptual developments. It was one of the aims of 3ecm to reflect this mutual enrich- ment, while steering present and future trends of mathematical sciences. In fact, the motto of the Congress, Shaping the 21st Century, was meant to capture these views. Nearly 1400 people from 87 countries gathered together in the Palau de Con- gressos of Barcelona in order to take part in the activities of the 3ecm scientific programme: Nine plenary lectures, thirty invited lectures in parallel sessions, lec- tures given by EMS prize winners, ten mini-symposia on special topics, seven round tables, poster sessions, presentations of mathematical software and video exhibitions. Twenty events were satellites of 3ecm in various countries.
Serving both as an introduction to the subject and as a reference, this book presents the theory in elegant form and with modern concepts and notation. It covers the general theory and emphasizes the classical types of orthogonal polynomials whose weight functions are supported on standard domains. The approach is a blend of classical analysis and symmetry group theoretic methods. Finite reflection groups are used to motivate and classify symmetries of weight functions and the associated polynomials. This revised edition has been updated throughout to reflect recent developments in the field. It contains 25% new material, including two brand new chapters on orthogonal polynomials in two variables, which will be especially useful for applications, and orthogonal polynomials on the unit sphere. The most modern and complete treatment of the subject available, it will be useful to a wide audience of mathematicians and applied scientists, including physicists, chemists and engineers.