Prandtl was one of the great theorists of aerodynamics and this work has long been considered one of the finest introductory works in the field. Topics include flow through pipes, Prandtl's own work on boundary layers, drag, airfoil theory, and entry conditions for flow in a pipe.
Teaching text developed by U.S. Air Force Academy and designed as a first course emphasizes the universal variable formulation. Develops the basic two-body and n-body equations of motion; orbit determination; classical orbital elements, coordinate transformations; differential correction; more. Includes specialized applications to lunar and interplanetary flight, example problems, exercises. 1971 edition.
"Written by one of the leading aerospace educators of our time, each sentence is packed with information. An outstanding book." — Private Pilot "Illuminated throughout by new twists in explaining familiar concepts, helpful examples and intriguing ‘by-the-ways.’ A fine book." — Canadian Aeronautics and Space Journal This classic by a Stanford University educator and a pioneer of aerospace engineering introduces the complex process of designing atmospheric flight vehicles. An exploration of virtually every important subject in the fields of subsonic, transonic, supersonic, and hypersonic aerodynamics and dynamics, the text demonstrates how these topics interface and how they complement one another in atmospheric flight vehicle design. The mathematically rigorous treatment is geared toward graduate-level students, and it also serves as an excellent reference. Problems at the end of each chapter encourage further investigation of the text’s material, the study of fresh ideas, and the exploration of new areas.
Alexandr S. Yakovlev was one of the most versatile aircraft designers of his age, but he had the misfortune to work in the USSR which made him almost unknown to the outside world. In 1926-27 he built his first aeroplane and from then on he designed structures which were, time and again, ahead of their time.
Comprehensive guide to the basic principles and applications of non-destructive testing methods for aircraft system and components: airframe, propulsion, landing gear and more Provides detailed analysis of the advantages and disadvantages of major NDT methods Important for design, inspection, maintenance, repair, corrosion protection and safety This critical book is among the first to provide a detailed assessment of non-destructive testing methods for the many materials and thousands of parts in aircraft. It describes a wide variety of NDT techniques and explains their application in the evaluation and inspection of aerospace materials and components ranging from the entire airframe to systems and subsystems. At the same time the book offers guidance on the information derived from each NDT method and its relation to aircraft design, repair, maintenance and overall safety. The book covers basic principles, as well as practical details of instrumentation, procedures and operational results with a full discussion of each method's capabilities and limitations as these pertain to aircraft inspection and different types of materials, e.g., composites and metal alloys. Technologies covered include: optical and enhanced optical methods; liquid penetrant, replication and magnetic particle inspection; electromagnetic and eddy current approaches; acoustics and ultrasonic techniques; infrared thermal imaging; and radiographic methods. A final section is devoted to NDT reliability and ways the probability of detection can be measured to establish inspection intervals.
This popular and highly-acclaimed series includes an abundance of photos, accurate line drawings, fascinating evaluations of aircraft design, and complete histories of aircraft manufacturers.
This Chart User's Guide is an introduction to the Federal Aviation Administration's (FAA) aeronautical charts and publications. It is useful to new pilots as a learning aid, and to experienced pilots as a quick reference guide.