Flow Control Through Bio-inspired Leading-Edge Tubercles

Flow Control Through Bio-inspired Leading-Edge Tubercles

Author: Daniel T. H. New

Publisher: Springer Nature

Published: 2020-01-31

Total Pages: 185

ISBN-13: 3030237923

DOWNLOAD EBOOK

This book describes and explains the basis of bio-inspired, leading-edge tubercles based on humpback whale flippers as passive but effective flow control devices, as well as providing a comprehensive practical guide in their applications. It first discusses the morphology of the humpback whale flipper from a biological perspective, before presenting detailed experimental and numerical findings from past investigations by various experts on the benefits of leading-edge tubercles and their engineering implementations. Leading-edge tubercle designs and functions have attracted considerable interest from researchers in terms of understanding their role in the underwater agility of these whales, and to exploit their flow dynamics in the development of new and novel engineering solutions. Extensive research over the past recent years has demonstrated that the maneuverability of these whales is at least in part due to the leading-edge tubercles acting as passive flow control devices to delay stall and increase lift in the post-stall regime. In addition to the inherent benefits in terms of aerodynamics and hydrodynamics, investigations into leading-edge tubercles have also broadened into areas of noise attenuation, stability and industrial applications. This book touches upon these areas, with an emphasis upon the effects of lifting-surface types, flow regimes, tubercle geometries, lifting-surface stability and potential industrial applications, among others. As such, it features contributions from key experts in the fields of biology, physics and engineering who have conducted significant studies into understanding the various aspects of leading-edge tubercles. Given the broad coverage and in-depth analysis, this book will benefit academic researchers, practicing engineers and graduate students interested in tapping into such a unique but highly functional flow control strategy.


Low-Speed Wind Tunnel Testing

Low-Speed Wind Tunnel Testing

Author: Jewel B. Barlow

Publisher: John Wiley & Sons

Published: 1999-02-22

Total Pages: 738

ISBN-13: 0471557749

DOWNLOAD EBOOK

A brand-new edition of the classic guide on low-speed wind tunnel testing While great advances in theoretical and computational methods have been made in recent years, low-speed wind tunnel testing remains essential for obtaining the full range of data needed to guide detailed design decisions for many practical engineering problems. This long-awaited Third Edition of William H. Rae, Jr.'s landmark reference brings together essential information on all aspects of low-speed wind tunnel design, analysis, testing, and instrumentation in one easy-to-use resource. Written by authors who are among the most respected wind tunnel engineers in the world, this edition has been updated to address current topics and applications, and includes coverage of digital electronics, new instrumentation, video and photographic methods, pressure-sensitive paint, and liquid crystal-based measurement methods. The book is organized for quick access to topics of interest, and examines basic test techniques and objectives of modeling and testing aircraft designs in low-speed wind tunnels, as well as applications to fluid motion analysis, automobiles, marine vessels, buildings, bridges, and other structures subject to wind loading. Supplemented with real-world examples throughout, Low-Speed Wind Tunnel Testing, Third Edition is an indispensable resource for aerospace engineering students and professionals, engineers and researchers in the automotive industries, wind tunnel designers, architects, and others who need to get the most from low-speed wind tunnel technology and experiments in their work.


World Intellectual Property Report

World Intellectual Property Report

Author: World Intellectual Property Organization

Publisher: WIPO

Published: 2015

Total Pages: 146

ISBN-13: 9280526804

DOWNLOAD EBOOK

WIPO's latest World Intellectual Property Report (WIPR) explores the role of IP at the nexus of innovation and economic growth, focusing on the impact of breakthrough innovations.


Measurement Uncertainty

Measurement Uncertainty

Author: Ronald H. Dieck

Publisher: ISA

Published: 2007

Total Pages: 292

ISBN-13: 9781556179150

DOWNLOAD EBOOK

Literally an entire course between two covers, Measurement Uncertainty: Methods and Applications, Fourth Edition, presents engineering students with a comprehensive tutorial of measurement uncertainty methods in a logically categorized and readily utilized format. The new uncertainty technologies embodied in both U.S. and international standards have been incorporated into this text with a view toward understanding the strengths and weaknesses of both. The book is designed to also serve as a practical desk reference in situations that commonly confront an experimenter. The text presents the basics of the measurement uncertainty model, non-symmetrical systematic standard uncertainties, random standard uncertainties, the use of correlation, curve-fitting problems, and probability plotting, combining results from different test methods, calibration errors, and uncertainty propagation for both independent and dependent error sources. The author draws on years of experience in industry to direct special attention to the problem of developing confidence in uncertainty analysis results and using measurement uncertainty to select instrumentation systems.


Aerodynamic Characteristics of a Wing with Quarter-chord Line Swept Back 45 Degrees, Aspect Ratio 4, Taper Ratio 0.3, and NACA 65A006 Airfoil Section

Aerodynamic Characteristics of a Wing with Quarter-chord Line Swept Back 45 Degrees, Aspect Ratio 4, Taper Ratio 0.3, and NACA 65A006 Airfoil Section

Author: Boyd C. Myers

Publisher:

Published: 1949

Total Pages: 36

ISBN-13:

DOWNLOAD EBOOK

This paper presents the results of the investigation of a wing-alone and wing-fuselage configuration employing a wing with the quarter-chord line swept back 45 degrees, with aspect ratio 4, taper ratio 0.3, and an NACA 65A006 airfoil section. Lift, drag, pitching moment, and root bending moment were obtained for these configurations. In addition, effective downwash angles and dynamic-pressure characteristics in the region of a probable tail location were also obtained for these configurations and are presented for a range of tail heights at one tail length. In order to expedite the publishing of these data, only a brief analysis is included.


Particle Image Velocimetry

Particle Image Velocimetry

Author: Markus Raffel

Publisher: Springer Science & Business Media

Published: 2007-08-09

Total Pages: 460

ISBN-13: 3540723072

DOWNLOAD EBOOK

This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What’s more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.


Aerodynamic Characteristics of a Spoiler-slot-deflector Control on a 45© Sweptback Wing at Mach Numbers of 1.61 and 2.01

Aerodynamic Characteristics of a Spoiler-slot-deflector Control on a 45© Sweptback Wing at Mach Numbers of 1.61 and 2.01

Author: Douglas R. Lord

Publisher:

Published: 1957

Total Pages: 52

ISBN-13:

DOWNLOAD EBOOK

An investigation has been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.61 and 2.01 to determine the aerodynamic characteristics of a spoiler-slot-deflector control on a 45 degree sweptback wing having an aspect ratio of 3.5, a taper ratio of 0.3, and an NACA 65A005 airfoil section. The model was equipped with a 15-percent-chord spoiler-slot-deflector extending from 13 o 78 percent of the wing semispan. The spoiler and deflector were hinged along the 60- and 75-percent-chord lines, respectively. Tests were made at a Reynolds number of 3,000,000 (based on the mean aerodynamic chord of the wing) and covered ranges of angles of attack from -3 to 15 degrees, spoiler projections from 0 to 8.0 percent chord, and deflector projections from 0 to 7.6 percent chord.


Flight Vehicle Aerodynamics

Flight Vehicle Aerodynamics

Author: Mark Drela

Publisher: MIT Press

Published: 2014-02-07

Total Pages: 304

ISBN-13: 0262526441

DOWNLOAD EBOOK

An overview of the physics, concepts, theories, and models underlying the discipline of aerodynamics. This book offers a general overview of the physics, concepts, theories, and models underlying the discipline of aerodynamics. A particular focus is the technique of velocity field representation and modeling via source and vorticity fields and via their sheet, filament, or point-singularity idealizations. These models provide an intuitive feel for aerodynamic flow-field behavior and are the basis of aerodynamic force analysis, drag decomposition, flow interference estimation, and other important applications. The models are applied to both low speed and high speed flows. Viscous flows are also covered, with a focus on understanding boundary layer behavior and its influence on aerodynamic flows. The book covers some topics in depth while offering introductions and summaries of others. Computational methods are indispensable for the practicing aerodynamicist, and the book covers several computational methods in detail, with a focus on vortex lattice and panel methods. The goal is to improve understanding of the physical models that underlie such methods. The book also covers the aerodynamic models that describe the forces and moments on maneuvering aircraft, and provides a good introduction to the concepts and methods used in flight dynamics. It also offers an introduction to unsteady flows and to the subject of wind tunnel measurements. The book is based on the MIT graduate-level course “Flight Vehicle Aerodynamics” and has been developed for use not only in conventional classrooms but also in a massive open online course (or MOOC) offered on the pioneering MOOC platform edX. It will also serve as a valuable reference for professionals in the field. The text assumes that the reader is well versed in basic physics and vector calculus, has had some exposure to basic fluid dynamics and aerodynamics, and is somewhat familiar with aerodynamics and aeronautics terminology.