This book covers developments in the field of thermotropic liquid crystals and their functional importance. It also presents advances related to different sub-areas pertinent to this interdisciplinary area of research. This text brings together research from synthetic scientists and spectroscopists and attempts to bridge the gaps between these areas. New physical techniques that are powerful in characterizing these materials are discussed.
This volume contains an eclectic collection of 22 papers on liquid crystalline polymers presented at the Sixth Polymer Workshop, in the series sponsored by the European Science Foundation, entitled: 'Liquid Crystal Polymer Systems', in Gentofte, Denmark, 12-14 September 1983. Since a contribution to this volume was strictly voluntary, and in some cases represents a considerably expanded version of that which was presented, it is strictly speaking not correct to term this a 'proceedings'. A description of the aims and purposes of the European Science Foundation with respect to the polymer area has been presented in: Shell Polymers, Vol. 5, No.2, pp. 34-35, 1981. The papers given here represent a cross-section of current research interests in liquid crystalline polymers in the areas of theory, synthesis, characterization, structure-property relationships and applications. At least some of the current interest is motivated by attempts to practically exploit the novel properties of these materials in the developing tech nologies of high strength fibres and advanced materials for constructional purposes, but also for functional materials in the areas of information retrieval, electronics and opto-electronics applications. The editor wishes to thank all those involved for their courtesy and co-operation.
Annotation Liquid crystal polymers are sometimes called super polymers--with good reason. Their wide range of exceptional properties and ease of processing make them design candidates for many demanding applications. This new book provides a thorough review of LCP technology with the emphasis on the chemistry, synthesis and characterization of the material in its many variants. Additional chapters cover processing and applications. From the Editor's Preface The field of thermotropic liquid crystalline polymers has grown substantially in the last two decades, with fundamental research, publications, commercial products, and patents. In the 1980's, Dr. Ralph Miano led my colleagues and me at Hoechst Celanese in commercializing the first thermotropic liquid crystalline polymers, based on Dr. Gordon Calundann's composition patents. Today, more than seven companies have produced thermotropic liquid crystalline polymer materials, with at least 50 variants available. Hence, it is timely to compile a comprehensive review on the nature of this type of material and the ongoing progress in this field€. The goals of this book are to summarize previous work, provide new insights into this class of polymers, and add to the understanding of the formation of liquid crystallinity. This book covers a wide range of topics and addresses different disciplines in the field. The chapters are arranged as a learning scheme for the professional, from basic science to applied engineering. The first few chapters summarize the syntheses of various polyester, polyester-amid, and polyimide liquid crystalline polymers. The science and origins of liquid crystal formation are revealed. Next, we introduce the characterizations of these materials by their different chemical and physical aspects. Because most commercially available thermotropic liquid crystalline polymers have been used in the form of composites, we have also incorporated a chapter on polymer blends, detailing blending mechanisms and resultant properties. Two chapters on thermosetting liquid crystalline polymers integrate them with other topics, because of their unique importance and their applications for microelectronics and packaging. The final chapter deals with the engineering and processing aspects of thermoplastic liquid crystalline polymers for a variety of applications.
Liquid crystal polymers are sometimes called super polymers--with good reason. Their wide range of exceptional properties and ease of processing make them design candidates for many demanding applications. This new book provides a thorough review of LCP technology with the emphasis on the chemistry, synthesis and characterization of the material in its many variants. Additional chapters cover processing and applications. From the Editor's Preface The field of thermotropic liquid crystalline polymers has grown substantially in the last two decades, with fundamental research, publications, commercial products, and patents. In the 1980's, Dr. Ralph Miano led my colleagues and me at Hoechst Celanese in commercializing the first thermotropic liquid crystalline polymers, based on Dr. Gordon Calundann's composition patents. Today, more than seven companies have produced thermotropic liquid crystalline polymer materials, with at least 50 variants available. Hence, it is timely to compile a comprehensive review on the nature of this type of material and the ongoing progress in this field.... The goals of this book are to summarize previous work, provide new insights into this class of polymers, and add to the understanding of the formation of liquid crystallinity. This book covers a wide range of topics and addresses different disciplines in the field. The chapters are arranged as a learning scheme for the professional, from basic science to applied engineering. The first few chapters summarize the syntheses of various polyester, polyester-amid, and polyimide liquid crystalline polymers. The science and origins of liquid crystal formation are revealed. Next, we introduce the characterizations of these materials by their different chemical and physical aspects. Because most commercially available thermotropic liquid crystalline polymers have been used in the form of composites, we have also incorporated a chapter on polymer blends, detailing blending mechanisms and resultant properties. Two chapters on thermosetting liquid crystalline polymers integrate them with other topics, because of their unique importance and their applications for microelectronics and packaging. The final chapter deals with the engineering and processing aspects of thermoplastic liquid crystalline polymers for a variety of applications.
In recent years, studies by both industry and academic researchers have opened the door to improving performance and reducing costs of these new materials. The particular structure and morphology of LCPs, as well as their peculiar rheological behavior, have stimulated researchers to develop new theoretical models and new characterization and processing techniques to more fully understand and utilize LCPs. Although the scientific literature is very rich in data on the synthetic techniques and on the relations between structure and phase behavior of these new polymers, the understanding of the rheological and processing aspects is still far from satisfactory-particularly in the case of LCP blends. In fact, although an appreciable number of patents and scientific papers have appeared describing the phase behavior, the rheology, and the mechanical properties of many of these polyblends, several aspects of the relations between processing and morphology, and between morphology and properties of these materials are still obscure or even controversial. Now, this new book, written by leading researchers, provides an up-to-date guide and reference to the processing, rheology and applications of pure LCPs and LCP blends. The book concisely reviews the synthetic procedures for the production of LCPs and discusses the rheological behavior and processing methods. Plus, the book examines present and future applications areas of LCPs and LCP blends.
This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.
The Nato Advanced Study Institute "Phase Transitions in Liquid Crystals" was held May 2-12, 1991, in Erice, Sicily. This was the 16th conference organized by the International School of Quantum Electronics, under the auspices of the "Ettore Majorana" Centre for Scientific Culture. The subject of "Liquid Crystals" has made amazing progress since the last ISQE Course on this subject in 1985. The present Proceedings give a tutorial introduction to today's most important areas, as well as a review of current results by leading researchers. We have brought together some of the world's acknowledged experts in the field to summarize both the present state of their research and its background. Most of the lecturers attended all the lectures and devoted their spare hours to stimulating discussions. We would like to thank them all for their admirable contributions. The Institute also took advantage of a very active audience; most of the students were active researchers in the field and contributed with discussions and seminars. Some of these student seminars are also included in these Proceedings. We did not modify the original manuscripts in editing this book, but we did group them according to the following topics: 1) "Theoretical Foundations"; 2) "Thermotropic Liquid Crystals"; 3) "Ferroelectric Liquid Crystals"; 4) "Polymeric Liquid Crystals"; and 5) "Lyotropic Liquid Crystals".
The work focuses on recent developments of the rapidly evolving field of Non-conventional Liquid Crystals. After a concise introduction it discusses the most promising research such as biosensing, elastomers, polymer films , photoresponsive properties and energy harvesting. Besides future applications it discusses as well potential frontiers in LC science and technology.
A unique compendium of knowledge on all aspects of the texture of liquid crystals, providing not just detailed information on texture formation and determination, but also an in-depth discussion of different characterization methods. Experts as well as graduates entering the field will find all the information they need in this handbook, while the magnitude of the color images make it valuable hands-on-reference.
Liquid Crystal Sensors discusses novel applications of liquid crystals that lie beyond electrically driven optical switches and displays. The main focus is on recent progress in the area of sensors based on low molar mass and polymer liquid crystals. This area of research became "hot" in recent years since the possibilities for applications of liquid crystal sensors are growing in many areas, ranging from the detection of mechanical displacements to the detection of environmental pollutants and chemical agents. This book is well-suited for students, as well as scientists from different backgrounds. For students and researchers new to the field, it gives a thorough introduction. For experienced researchers it shows the latest breakthroughs and serves as an inspiration for solving problems or sparking new ideas. Key Features: Emphasizes how liquid crystals are extremely sensitive to external stimuli and therefore can be used for the construction of stimuli-responsive devices, such as sensors Includes the contributions of editors who are deeply involved in the field and author chapters on hot topics such as the sensitivity of liquid crystals to pollutants, UV light, and strain Provides an exclusive on LC sensors where having the data in one place will be very useful to the community Gives more information on sensors and broadens the scope by having a contributed volume rather than authored Combines recent data on advances in the area of liquid crystal sensors that includes many types of liquid crystal materials