Recent Advances in Numerical Methods features contributions from distinguished researchers, focused on significant aspects of current numerical methods and computational mathematics. The increasing necessity to present new computational methods that can solve complex scientific and engineering problems requires the preparation of this volume with actual new results and innovative methods that provide numerical solutions in effective computing times. Each chapter will present new and advanced methods and modern variations on known techniques that can solve difficult scientific problems efficiently.
Numerical analysis forms a cornerstone of numeric computing and optimization, in particular recently, interval numerical computations play an important role in these topics. The interest of researchers in computations involving uncertain data, namely interval data opens new avenues in coping with real-world problems and deliver innovative and efficient solutions. This book provides the basic theoretical foundations of numerical methods, discusses key technique classes, explains improvements and improvements, and provides insights into recent developments and challenges. The theoretical parts of numerical methods, including the concept of interval approximation theory, are introduced and explained in detail. In general, the key features of the book include an up-to-date and focused treatise on error analysis in calculations, in particular the comprehensive and systematic treatment of error propagation mechanisms, considerations on the quality of data involved in numerical calculations, and a thorough discussion of interval approximation theory. Moreover, this book focuses on approximation theory and its development from the perspective of linear algebra, and new and regular representations of numerical integration and their solutions are enhanced by error analysis as well. The book is unique in the sense that its content and organization will cater to several audiences, in particular graduate students, researchers, and practitioners.
In January 1992, the Sixth Workshop on Optimization and Numerical Analysis was held in the heart of the Mixteco-Zapoteca region, in the city of Oaxaca, Mexico, a beautiful and culturally rich site in ancient, colonial and modern Mexican civiliza tion. The Workshop was organized by the Numerical Analysis Department at the Institute of Research in Applied Mathematics of the National University of Mexico in collaboration with the Mathematical Sciences Department at Rice University, as were the previous ones in 1978, 1979, 1981, 1984 and 1989. As were the third, fourth, and fifth workshops, this one was supported by a grant from the Mexican National Council for Science and Technology, and the US National Science Foundation, as part of the joint Scientific and Technical Cooperation Program existing between these two countries. The participation of many of the leading figures in the field resulted in a good representation of the state of the art in Continuous Optimization, and in an over view of several topics including Numerical Methods for Diffusion-Advection PDE problems as well as some Numerical Linear Algebraic Methods to solve related pro blems. This book collects some of the papers given at this Workshop.
Mathematical models are used to convert real-life problems using mathematical concepts and language. These models are governed by differential equations whose solutions make it easy to understand real-life problems and can be applied to engineering and science disciplines. This book presents numerical methods for solving various mathematical models. This book offers real-life applications, includes research problems on numerical treatment, and shows how to develop the numerical methods for solving problems. The book also covers theory and applications in engineering and science. Engineers, mathematicians, scientists, and researchers working on real-life mathematical problems will find this book useful.
This self-contained volume brings together a collection of chapters by some of the most distinguished researchers and practitioners in the field of mathematical finance and financial engineering. Presenting state-of-the-art developments in theory and practice, the book has real-world applications to fixed income models, credit risk models, CDO pricing, tax rebates, tax arbitrage, and tax equilibrium. It is a valuable resource for graduate students, researchers, and practitioners in mathematical finance and financial engineering.
The topics in this volume range from basic research in numerical methods to applications in physics, mechanics, engineering, environmental science and other areas. These include: numerical methods (finite difference, finite element and boundary element methods; numerical methods of approximation theory; Monte-Carlo methods; preconditioning methods); parallel algorithms; applications of numerical methods.
Control Perspectives on Numerical Algorithms and Matrix Problems organizes the analysis and design of iterative numerical methods from a control perspective. The authors discuss a variety of applications, including iterative methods for linear and nonlinear systems of equations, neural networks for linear and quadratic programming problems, support vector machines, integration and shooting methods for ordinary differential equations, matrix preconditioning, matrix stability, and polynomial zero finding. This book opens up a new field of interdisciplinary research that should lead to insights in the areas of both control and numerical analysis and shows that a wide range of applications can be approached from, and benefit from, a control perspective.
A numerical simulation is a computing calculation following a program that develops a mathematical model for a physical, social, economic, or biological system. Numerical simulations are required for analyzing and studying the behavior of systems whose mathematical models are very complex, as in the case of nonlinear systems. Capturing the resulting uncertainty of models based on uncertain parameters and constraints in confidence intervals (1-D), or more generally (>1-D) confidence regions, is very common for expressing to which degree the computed result is believed to be consistent with possible values of the targeted observable. This book examines the different methods used in numerical simulations, including adaptive and stochastic methods as well as finite element analysis research. This work is accompanied by studies of confidence regions, often utilized to express the credibility of such calculations and simulations.
This book deals with the most recent numerical modeling of adhesive joints. Advances in damage mechanics and extended finite element method are described in the context of the Finite Element method with examples of application. The book also introduces the classical continuum mechanics and fracture mechanics approach and discusses the boundary element method and the finite difference method with indication of the cases they are most adapted to. At the moment there a no numerical technique that can solve any problem and the analyst needs to be aware of the limitations involved in each case.
This book introduces the main topics of modern numerical analysis: sequence of linear equations, error analysis, least squares, nonlinear systems, symmetric eigenvalue problems, three-term recursions, interpolation and approximation, large systems and numerical integrations. The presentation draws on geometrical intuition wherever appropriate and is supported by a large number of illustrations, exercises, and examples.