Advances in Natural Deduction

Advances in Natural Deduction

Author: Luiz Carlos Pereira

Publisher: Springer

Published: 2014-07-08

Total Pages: 288

ISBN-13: 9400775482

DOWNLOAD EBOOK

This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order rules, as opposed to higher-order connectives, and a paper discussing the application of natural deduction rules to dealing with equality in predicate calculus. The volume continues with a key chapter summarizing work on the extension of the Curry-Howard isomorphism (itself a by-product of the work on natural deduction), via methods of category theory that have been successfully applied to linear logic, as well as many other contributions from highly regarded authorities. With an illustrious group of contributors addressing a wealth of topics and applications, this volume is a valuable addition to the libraries of academics in the multiple disciplines whose development has been given added scope by the methodologies supplied by natural deduction. The volume is representative of the rich and varied directions that Prawitz work has inspired in the area of natural deduction.


Advances in Proof-Theoretic Semantics

Advances in Proof-Theoretic Semantics

Author: Thomas Piecha

Publisher: Springer

Published: 2015-10-24

Total Pages: 281

ISBN-13: 331922686X

DOWNLOAD EBOOK

This volume is the first ever collection devoted to the field of proof-theoretic semantics. Contributions address topics including the systematics of introduction and elimination rules and proofs of normalization, the categorial characterization of deductions, the relation between Heyting's and Gentzen's approaches to meaning, knowability paradoxes, proof-theoretic foundations of set theory, Dummett's justification of logical laws, Kreisel's theory of constructions, paradoxical reasoning, and the defence of model theory. The field of proof-theoretic semantics has existed for almost 50 years, but the term itself was proposed by Schroeder-Heister in the 1980s. Proof-theoretic semantics explains the meaning of linguistic expressions in general and of logical constants in particular in terms of the notion of proof. This volume emerges from presentations at the Second International Conference on Proof-Theoretic Semantics in Tübingen in 2013, where contributing authors were asked to provide a self-contained description and analysis of a significant research question in this area. The contributions are representative of the field and should be of interest to logicians, philosophers, and mathematicians alike.


The Functional Interpretation of Logical Deduction

The Functional Interpretation of Logical Deduction

Author: Ruy J. G. B. de Queiroz

Publisher: World Scientific

Published: 2012

Total Pages: 299

ISBN-13: 9814360953

DOWNLOAD EBOOK

This comprehensive book provides an adequate framework to establish various calculi of logical inference. Being an ?enriched? system of natural deduction, it helps to formulate logical calculi in an operational manner. By uncovering a certain harmony between a functional calculus on the labels and a logical calculus on the formulas, it allows mathematical foundations for systems of logic presentation designed to handle meta-level features at the object-level via a labelling mechanism, such as the D Gabbay's Labelled Deductive Systems. The book truly demonstrates that introducing ?labels? is useful to understand the proof-calculus itself, and also to clarify its connections with model-theoretic interpretations.


Justification Logic

Justification Logic

Author: Sergei Artemov

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 271

ISBN-13: 1108424910

DOWNLOAD EBOOK

Develops a new logic paradigm which emphasizes evidence tracking, including theory, connections to other fields, and sample applications.


ELEMENTARY LOGIC REV ED P

ELEMENTARY LOGIC REV ED P

Author: W. V. QUINE

Publisher: Harvard University Press

Published: 2009-06-30

Total Pages: 144

ISBN-13: 0674042492

DOWNLOAD EBOOK

Now much revised since its first appearance in 1941, this book, despite its brevity, is notable for its scope and rigor. It provides a single strand of simple techniques for the central business of modern logic. Basic formal concepts are explained, the paraphrasing of words into symbols is treated at some length, and a testing procedure is given for truth-function logic along with a complete proof procedure for the logic of quantifiers. Fully one third of this revised edition is new, and presents a nearly complete turnover in crucial techniques of testing and proving, some change of notation, and some updating of terminology. The study is intended primarily as a convenient encapsulation of minimum essentials, but concludes by giving brief glimpses of further matters.


Proof-theoretic Semantics

Proof-theoretic Semantics

Author: Nissim Francez

Publisher:

Published: 2015-10-29

Total Pages: 438

ISBN-13: 9781848901834

DOWNLOAD EBOOK

This book is a monograph on the topic of Proof-Theoretic Semantics, a theory of meaning constituting an alternative to the more traditional Model-Theoretic Semantics. The latter regards meaning as truth-conditions (in arbitrary models), the former regards meaning as canonical derivability conditions in a meaning-conferring natural-deduction proof-system. In the first part of the book, the Proof-Theoretic Semantics for logic is presented. It surveys the way a natural-deduction system can serve as meaning-conferring, and in particular analyses various criteria such a system has to meet in order to qualify as meaning-conferring. A central criterion is harmony, a balance between introduction-rules and elimination-rules. The theory is applied to various logics, e.g., relevance logic, and various proof systems such as multi-conclusion natural-deduction and bilateralism. The presentation is inspired by recent work by the author, and also surveys recent developments. In part two, the theory is applied to fragments of natural language, both extensional and intensional, a development based on the author's recent work. For example, conservativity of determiners, once set up in a proof-theoretic framework, becomes a provable property of all (regular) determiners. It is shown that meaning need not carry the heavy ontological load characteristic of Model-Theoretic Semantics of complex natural language constructs. Nissim Francez is an emeritus professor of computer science at the Technion, Israel Institute of Technology. At a certain point in his career he moved from research related to concurrent and distributed programming and program verification to research in computational linguistics, mainly formal semantics of natural language. In recent years, he has worked on Proof-Theoretic Semantics, in particular for natural language.


An Introduction to Logic - Second Edition

An Introduction to Logic - Second Edition

Author: Richard T.W. Arthur

Publisher: Broadview Press

Published: 2016-11-30

Total Pages: 460

ISBN-13: 1770486488

DOWNLOAD EBOOK

In lively and readable prose, Arthur presents a new approach to the study of logic, one that seeks to integrate methods of argument analysis developed in modern “informal logic” with natural deduction techniques. The dry bones of logic are given flesh by unusual attention to the history of the subject, from Pythagoras, the Stoics, and Indian Buddhist logic, through Lewis Carroll, Venn, and Boole, to Russell, Frege, and Monty Python. A previous edition of this book appeared under the title Natural Deduction. This new edition adds clarifications of the notions of explanation, validity and formal validity, a more detailed discussion of derivation strategies, and another rule of inference, Reiteration.


Proofs and Algorithms

Proofs and Algorithms

Author: Gilles Dowek

Publisher: Springer Science & Business Media

Published: 2011-01-11

Total Pages: 161

ISBN-13: 0857291211

DOWNLOAD EBOOK

Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.


Structural Proof Theory

Structural Proof Theory

Author: Sara Negri

Publisher: Cambridge University Press

Published: 2008-07-10

Total Pages: 279

ISBN-13: 9780521068420

DOWNLOAD EBOOK

A concise introduction to structural proof theory, a branch of logic studying the general structure of logical and mathematical proofs.