Advances in Modal Logic is a unique forum for presenting the latest results and new directions of research in modal logic. The topics dealt with are of interdisciplinary interest and range from mathematical, computational, and philosophical problems to applications in knowledge representation and formal linguistics.Volume 3 presents substantial advances in the relational model theory and the algorithmic treatment of modal logics. It contains invited and contributed papers from the third conference on “Advances in Modal Logic”, held at the University of Leipzig (Germany) in October 2000. It includes papers on dynamic logic, description logic, hybrid logic, epistemic logic, combinations of modal logics, tense logic, action logic, provability logic, and modal predicate logic.
The Handbook of Modal Logic contains 20 articles, which collectively introduce contemporary modal logic, survey current research, and indicate the way in which the field is developing. The articles survey the field from a wide variety of perspectives: the underling theory is explored in depth, modern computational approaches are treated, and six major applications areas of modal logic (in Mathematics, Computer Science, Artificial Intelligence, Linguistics, Game Theory, and Philosophy) are surveyed. The book contains both well-written expository articles, suitable for beginners approaching the subject for the first time, and advanced articles, which will help those already familiar with the field to deepen their expertise. Please visit: http://people.uleth.ca/~woods/RedSeriesPromo_WP/PubSLPR.html - Compact modal logic reference - Computational approaches fully discussed - Contemporary applications of modal logic covered in depth
This is an advanced 2001 textbook on modal logic, a field which caught the attention of computer scientists in the late 1970s. Researchers in areas ranging from economics to computational linguistics have since realised its worth. The book is for novices and for more experienced readers, with two distinct tracks clearly signposted at the start of each chapter. The development is mathematical; prior acquaintance with first-order logic and its semantics is assumed, and familiarity with the basic mathematical notions of set theory is required. The authors focus on the use of modal languages as tools to analyze the properties of relational structures, including their algorithmic and algebraic aspects, and applications to issues in logic and computer science such as completeness, computability and complexity are considered. Three appendices supply basic background information and numerous exercises are provided. Ideal for anyone wanting to learn modern modal logic.
This book constitutes the refereed proceedings of the 7th International Workshop on Deontic Logic in Computer Science, DEON 2004, held in Madeira, Portugal, in May 2004. The 15 revised full papers presented together with the abstracts of 2 invited talks were carefully reviewed and selected for inclusion in the book. The papers are devoted to the relationship between normative concepts and computer science, artificial intelligence, organization theory, and law; in addition to these topics, special emphasis is placed on the relationship between deontic logic and multiagent systems.
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the twenty-second publication in the Lecture Notes in Logic series, will launch a discussion about the concept of intensionality in philosophy, logic, linguistics and mathematics. These articles grew out of a workshop held at the University of Munich in October, 2000. Some articles address philosophical issues raised by the possible worlds approach to intensionality; others are devoted to technical aspects of modal logic. The volume highlights the particular interdisciplinary nature of intensionality with articles spanning philosophy, linguistics, mathematics and computer science.
Modal Logic, originally conceived as the logic of necessity and possibility, has developed into a powerful mathematical and computational discipline. It is the main source of formal languages aimed at analyzing complex notions such as common knowledge and formal provability. Modal and modal-like languages also provide us with families of restricted description languages for relational and topological structures; they are being used in many disciplines, ranging from artificial intelligence, computer science and mathematics via natural language syntax and semantics to philosophy. This volume presents a broad and up-to-date view of the field, with contributions covering both the foundations of modal logic itself and each of the aforementioned application areas. Complemented with an editorial introduction covering the roots of modal logic, this book is indispensable for any advanced student and researcher in non-classical logic and its applications.
This is the first book-length treatment of hybrid logic and its proof-theory. Hybrid logic is an extension of ordinary modal logic which allows explicit reference to individual points in a model (where the points represent times, possible worlds, states in a computer, or something else). This is useful for many applications, for example when reasoning about time one often wants to formulate a series of statements about what happens at specific times. There is little consensus about proof-theory for ordinary modal logic. Many modal-logical proof systems lack important properties and the relationships between proof systems for different modal logics are often unclear. In the present book we demonstrate that hybrid-logical proof-theory remedies these deficiencies by giving a spectrum of well-behaved proof systems (natural deduction, Gentzen, tableau, and axiom systems) for a spectrum of different hybrid logics (propositional, first-order, intensional first-order, and intuitionistic).
Modal logics, originally conceived in philosophy, have recently found many applications in computer science, artificial intelligence, the foundations of mathematics, linguistics and other disciplines. Celebrated for their good computational behaviour, modal logics are used as effective formalisms for talking about time, space, knowledge, beliefs, actions, obligations, provability, etc. However, the nice computational properties can drastically change if we combine some of these formalisms into a many-dimensional system, say, to reason about knowledge bases developing in time or moving objects.To study the computational behaviour of many-dimensional modal logics is the main aim of this book. On the one hand, it is concerned with providing a solid mathematical foundation for this discipline, while on the other hand, it shows that many seemingly different applied many-dimensional systems (e.g., multi-agent systems, description logics with epistemic, temporal and dynamic operators, spatio-temporal logics, etc.) fit in perfectly with this theoretical framework, and so their computational behaviour can be analyzed using the developed machinery.We start with concrete examples of applied one- and many-dimensional modal logics such as temporal, epistemic, dynamic, description, spatial logics, and various combinations of these. Then we develop a mathematical theory for handling a spectrum of 'abstract' combinations of modal logics - fusions and products of modal logics, fragments of first-order modal and temporal logics - focusing on three major problems: decidability, axiomatizability, and computational complexity. Besides the standard methods of modal logic, the technical toolkit includes the method of quasimodels, mosaics, tilings, reductions to monadic second-order logic, algebraic logic techniques. Finally, we apply the developed machinery and obtained results to three case studies from the field of knowledge representation and reasoning: temporal epistemic logics for reasoning about multi-agent systems, modalized description logics for dynamic ontologies, and spatio-temporal logics.The genre of the book can be defined as a research monograph. It brings the reader to the front line of current research in the field by showing both recent achievements and directions of future investigations (in particular, multiple open problems). On the other hand, well-known results from modal and first-order logic are formulated without proofs and supplied with references to accessible sources.The intended audience of this book is logicians as well as those researchers who use logic in computer science and artificial intelligence. More specific application areas are, e.g., knowledge representation and reasoning, in particular, terminological, temporal and spatial reasoning, or reasoning about agents. And we also believe that researchers from certain other disciplines, say, temporal and spatial databases or geographical information systems, will benefit from this book as well.Key Features:• Integrated approach to modern modal and temporal logics and their applications in artificial intelligence and computer science• Written by internationally leading researchers in the field of pure and applied logic• Combines mathematical theory of modal logic and applications in artificial intelligence and computer science• Numerous open problems for further research• Well illustrated with pictures and tables
This is a thorough treatment of first-order modal logic. The book covers such issues as quantification, equality (including a treatment of Frege's morning star/evening star puzzle), the notion of existence, non-rigid constants and function symbols, predicate abstraction, the distinction between nonexistence and nondesignation, and definite descriptions, borrowing from both Fregean and Russellian paradigms.