Advances in Modal Logic is a unique forum for presenting the latest results and new directions of research in modal logic. The topics dealt with are of interdisciplinary interest and range from mathematical, computational, and philosophical problems to applications in knowledge representation and formal linguistics.Volume 3 presents substantial advances in the relational model theory and the algorithmic treatment of modal logics. It contains invited and contributed papers from the third conference on OC Advances in Modal LogicOCO, held at the University of Leipzig (Germany) in October 2000. It includes papers on dynamic logic, description logic, hybrid logic, epistemic logic, combinations of modal logics, tense logic, action logic, provability logic, and modal predicate logic."
Modal Logic, originally conceived as the logic of necessity and possibility, has developed into a powerful mathematical and computational discipline. It is the main source of formal languages aimed at analyzing complex notions such as common knowledge and formal provability. Modal and modal-like languages also provide us with families of restricted description languages for relational and topological structures; they are being used in many disciplines, ranging from artificial intelligence, computer science and mathematics via natural language syntax and semantics to philosophy. This volume presents a broad and up-to-date view of the field, with contributions covering both the foundations of modal logic itself and each of the aforementioned application areas. Complemented with an editorial introduction covering the roots of modal logic, this book is indispensable for any advanced student and researcher in non-classical logic and its applications.
Advances in Modal Logic is a unique forum for presenting the latest results and new directions of research in modal logic. The topics dealt with are of interdisciplinary interest and range from mathematical, computational, and philosophical problems to applications in knowledge representation and formal linguistics.Volume 3 presents substantial advances in the relational model theory and the algorithmic treatment of modal logics. It contains invited and contributed papers from the third conference on “Advances in Modal Logic”, held at the University of Leipzig (Germany) in October 2000. It includes papers on dynamic logic, description logic, hybrid logic, epistemic logic, combinations of modal logics, tense logic, action logic, provability logic, and modal predicate logic.
The Handbook of Modal Logic contains 20 articles, which collectively introduce contemporary modal logic, survey current research, and indicate the way in which the field is developing. The articles survey the field from a wide variety of perspectives: the underling theory is explored in depth, modern computational approaches are treated, and six major applications areas of modal logic (in Mathematics, Computer Science, Artificial Intelligence, Linguistics, Game Theory, and Philosophy) are surveyed. The book contains both well-written expository articles, suitable for beginners approaching the subject for the first time, and advanced articles, which will help those already familiar with the field to deepen their expertise. Please visit: http://people.uleth.ca/~woods/RedSeriesPromo_WP/PubSLPR.html - Compact modal logic reference - Computational approaches fully discussed - Contemporary applications of modal logic covered in depth
This book offers a state-of-the-art introduction to the basic techniques and results of neighborhood semantics for modal logic. In addition to presenting the relevant technical background, it highlights both the pitfalls and potential uses of neighborhood models – an interesting class of mathematical structures that were originally introduced to provide a semantics for weak systems of modal logic (the so-called non-normal modal logics). In addition, the book discusses a broad range of topics, including standard modal logic results (i.e., completeness, decidability and definability); bisimulations for neighborhood models and other model-theoretic constructions; comparisons with other semantics for modal logic (e.g., relational models, topological models, plausibility models); neighborhood semantics for first-order modal logic, applications in game theory (coalitional logic and game logic); applications in epistemic logic (logics of evidence and belief); and non-normal modal logics with dynamic modalities. The book can be used as the primary text for seminars on philosophical logic focused on non-normal modal logics; as a supplemental text for courses on modal logic, logic in AI, or philosophical logic (either at the undergraduate or graduate level); or as the primary source for researchers interested in learning about the uses of neighborhood semantics in philosophical logic and game theory.
Aristotle was the founder not only of logic but also of modal logic. In the Prior Analytics he developed a complex system of modal syllogistic which, while influential, has been disputed since antiquity—and is today widely regarded as incoherent. In this meticulously argued new study, Marko Malink presents a major reinterpretation of Aristotle’s modal syllogistic. Combining analytic rigor with keen sensitivity to historical context, he makes clear that the modal syllogistic forms a consistent, integrated system of logic, one that is closely related to other areas of Aristotle’s philosophy. Aristotle’s modal syllogistic differs significantly from modern modal logic. Malink considers the key to understanding the Aristotelian version to be the notion of predication discussed in the Topics—specifically, its theory of predicables (definition, genus, differentia, proprium, and accident) and the ten categories (substance, quantity, quality, and so on). The predicables introduce a distinction between essential and nonessential predication. In contrast, the categories distinguish between substantial and nonsubstantial predication. Malink builds on these insights in developing a semantics for Aristotle’s modal propositions, one that verifies the ancient philosopher’s claims of the validity and invalidity of modal inferences. Malink recognizes some limitations of this reconstruction, acknowledging that his proof of syllogistic consistency depends on introducing certain complexities that Aristotle could not have predicted. Nonetheless, Aristotle’s Modal Syllogistic brims with bold ideas, richly supported by close readings of the Greek texts, and offers a fresh perspective on the origins of modal logic.
This is a thorough treatment of first-order modal logic. The book covers such issues as quantification, equality (including a treatment of Frege's morning star/evening star puzzle), the notion of existence, non-rigid constants and function symbols, predicate abstraction, the distinction between nonexistence and nondesignation, and definite descriptions, borrowing from both Fregean and Russellian paradigms.
This is an advanced 2001 textbook on modal logic, a field which caught the attention of computer scientists in the late 1970s. Researchers in areas ranging from economics to computational linguistics have since realised its worth. The book is for novices and for more experienced readers, with two distinct tracks clearly signposted at the start of each chapter. The development is mathematical; prior acquaintance with first-order logic and its semantics is assumed, and familiarity with the basic mathematical notions of set theory is required. The authors focus on the use of modal languages as tools to analyze the properties of relational structures, including their algorithmic and algebraic aspects, and applications to issues in logic and computer science such as completeness, computability and complexity are considered. Three appendices supply basic background information and numerous exercises are provided. Ideal for anyone wanting to learn modern modal logic.