Advances in Light Water Reactor Technologies

Advances in Light Water Reactor Technologies

Author: Takehiko Saito

Publisher: Springer Science & Business Media

Published: 2010-12-21

Total Pages: 305

ISBN-13: 1441971017

DOWNLOAD EBOOK

Advances in Light Water Reactor Technologies focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested in learning the fundamentals of advanced light water plants.


Advanced Water-cooled Reactor Technologies

Advanced Water-cooled Reactor Technologies

Author: OECD Nuclear Energy Agency

Publisher: Organisation for Economic Co-operation and Development ; [Washington, D.C. : OECD Publications and Information Centre

Published: 1989

Total Pages: 112

ISBN-13:

DOWNLOAD EBOOK

Examines key policy and technical issues which are considered important to the future development and application of advanced water reactor technologies.


Nuclear Power

Nuclear Power

Author: National Research Council

Publisher: National Academies Press

Published: 1992-02-01

Total Pages: 234

ISBN-13: 0309043956

DOWNLOAD EBOOK

The construction of nuclear power plants in the United States is stopping, as regulators, reactor manufacturers, and operators sort out a host of technical and institutional problems. This volume summarizes the status of nuclear power, analyzes the obstacles to resumption of construction of nuclear plants, and describes and evaluates the technological alternatives for safer, more economical reactors. Topics covered include: Institutional issues-including regulatory practices at the federal and state levels, the growing trends toward greater competition in the generation of electricity, and nuclear and nonnuclear generation options. Critical evaluation of advanced reactors-covering attributes such as cost, construction time, safety, development status, and fuel cycles. Finally, three alternative federal research and development programs are presented.


Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

Author:

Publisher:

Published: 2015

Total Pages: 161

ISBN-13:

DOWNLOAD EBOOK

In July 2013, the US Department of Energy (DOE) and US Nuclear Regulatory Commission (NRC) established a joint initiative to address a key portion of the licensing framework essential to advanced (non-light water) reactor technologies. The initiative addressed the "General Design Criteria for Nuclear Power Plants," Appendix A to10 Code of Federal Regulations (CFR) 50, which were developed primarily for light water reactors (LWRs), specific to the needs of advanced reactor design and licensing. The need for General Design Criteria (GDC) clarifications in non-LWR applications has been consistently identified as a concern by the industry and varied stakeholders and was acknowledged by the NRC staff in their 2012 Report to Congress1 as an area for enhancement. The initiative to adapt GDC requirements for non-light water advanced reactor applications is being accomplished in two phases. Phase 1, managed by DOE, consisted of reviews, analyses and evaluations resulting in recommendations and deliverables to NRC as input for NRC staff development of regulatory guidance. Idaho National Laboratory (INL) developed this technical report using technical and reactor technology stakeholder inputs coupled with analysis and evaluations provided by a team of knowledgeable DOE national laboratory personnel with input from individual industry licensing consultants. The DOE national laboratory team reviewed six different classes of emerging commercial reactor technologies against 10 CFR 50 Appendix A GDC requirements and proposed guidance for their adapted use in non-LWR applications. The results of the Phase 1 analysis are contained in this report. A set of draft Advanced Reactor Design Criteria (ARDC) has been proposed for consideration by the NRC in the establishment of guidance for use by non-LWR designers and NRC staff. The proposed criteria were developed to preserve the underlying safety bases expressed by the original GDC, and recognizing that advanced reactors may take advantage of various new passive and inherent safety features different from those associated with LWRs.


Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

Author:

Publisher:

Published: 2014

Total Pages: 78

ISBN-13:

DOWNLOAD EBOOK

Reliable instrumentation, information, and control (II & C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II & C technology integration.


Nuclear Energy Materials And Reactors - Volume I

Nuclear Energy Materials And Reactors - Volume I

Author: Yassin A. Hassan

Publisher: EOLSS Publications

Published: 2010-09-22

Total Pages: 428

ISBN-13: 1848263112

DOWNLOAD EBOOK

Nuclear Energy Materials and Reactors is a component of Encyclopedia of Energy Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Nuclear energy is a type of technology involving the controlled use of nuclear fission to release energy for work including propulsion, heat, and the generation of electricity. The theme on Nuclear Energy Materials and Reactors discusses: Fundamentals of Nuclear Energy; Nuclear Physics; Nuclear Interactions; Nuclear Reactor Theory; Nuclear Reactor Design; Nuclear Reactor Kinetics; Reactivity Changes; Nuclear Power Plants; Pressurized Water Reactors; Boiling Water Reactors; Pressurized Heavy Water Reactors; Heavy Water Light Water Reactors; Advanced Gas Cooled Reactors; Light Water Graphite Reactors; High Temperature Gas Cooled Reactors; Pebble Bed Modular Reactor; Radioactive Wastes, Origins, Classification and Management; Nuclear Reactor Overview and Reactor Cycles; The Nuclear Reactor Closed Cycle; Safety of Boiling Water Reactors; Supercritical Water-Cooled Nuclear Reactors: Review and Status; The Gas-Turbine Modular Helium Reactor; Application of Risk Assessment to Nuclear Power Plants; Production and Recycling Resources for Nuclear Fission. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers.