This book comprises the select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME) 2020. This volume focuses on several emerging interdisciplinary areas involving mechanical engineering. Some of the topics covered include automobile engineering, mechatronics, applied mechanics, structural mechanics, hydraulic mechanics, human vibration, biomechanics, biomedical Instrumentation, ergonomics, biodynamic modeling, nuclear engineering, and agriculture engineering. The contents of this book will be useful for students, researchers as well as professionals interested in interdisciplinary topics of mechanical engineering.
This book presents select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2018). The book discusses interdisciplinary areas such as automobile engineering, mechatronics, applied and structural mechanics, bio-mechanics, biomedical instrumentation, ergonomics, biodynamic modeling, nuclear engineering, agriculture engineering, and farm machineries. The contents of the book will benefit both researchers and professionals.
Interdisciplinary Engineering Sciences introduces and emphasizes the importance of the interdisciplinary nature of education and research from a materials science perspective. This approach is aimed to promote understanding of the physical, chemical, biological and engineering aspects of any materials science problem. Contents are prepared to maintain the strong background of fundamental engineering disciplines while integrating them with the disciplines of natural science. It presents key concepts and includes case studies on biomedical materials and renewable energy. Aimed at senior undergraduate and graduate students in materials science and other streams of engineering, this book Explores interdisciplinary research aspects in a coherent manner for materials science researchers Presents key concepts of engineering sciences as relevant for materials science in terms of fundamentals and applications Discusses engineering mechanics, biological and physical sciences Includes relevant case studies and examples
Architects and engineers both claim to be designers, though how they define design and the approaches they use to realize it, vary widely. However their interaction has also created some of the world's most memorable, enduring and impressive buildings. The unprecedented impact of digital technologies illuminates the complexity and non-linearity of the process that these designers go through while massively expanding both the ability to visualize and represent forms, and to analyze their structural behavior. It has obviously changed both architecture and engineering, and so also the potential for interaction between them. Interdisciplinary Design began as a course at Harvard GSD attended by graduate students in architecture and also by MIT graduate students in structural engineering and computation. In this course students and instructors examined a series of built projects in order to develop new viewpoints and communication across disciplinary boundaries in teaching, practice and construction.
Facilitating Interdisciplinary Research examines current interdisciplinary research efforts and recommends ways to stimulate and support such research. Advances in science and engineering increasingly require the collaboration of scholars from various fields. This shift is driven by the need to address complex problems that cut across traditional disciplines, and the capacity of new technologies to both transform existing disciplines and generate new ones. At the same time, however, interdisciplinary research can be impeded by policies on hiring, promotion, tenure, proposal review, and resource allocation that favor traditional disciplines. This report identifies steps that researchers, teachers, students, institutions, funding organizations, and disciplinary societies can take to more effectively conduct, facilitate, and evaluate interdisciplinary research programs and projects. Throughout the report key concepts are illustrated with case studies and results of the committee's surveys of individual researchers and university provosts.
The aim of this essential reference is to bring together the interdisciplinary areas of biomedical engineering education. Contributors review the latest advances in biomedical engineering research through an educational perspective, making the book useful for students and professionals alike. Topics range from biosignal analysis and nanotechnology to biophotonics and cardiovascular medical devices. - Provides an educational review of recent advances - Focuses on biomedical high technology - Features contributions from leaders in the field
This book presents the scientific outcomes of the conference 11th Days of Bosnian-Herzegovinian American Academy of Arts and Sciences, held in Sarajevo, Bosnia and Herzegovina, June 20–23, 2019. Including innovative applications of advanced technologies, it offers a uniquely comprehensive, multidisciplinary and interdisciplinary overview of the latest developments in a broad range of technologies and methodologies, viewed through the prism of computing, networking, information technology, robotics, complex systems, communications, energy, mechanical engineering, economics and medicine, among others.
In the United States, broad study in an array of different disciplines â€"arts, humanities, science, mathematics, engineeringâ€" as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century. Researchers in all academic disciplines have been able to delve more deeply into their areas of expertise, grappling with ever more specialized and fundamental problems. Yet today, many leaders, scholars, parents, and students are asking whether higher education has moved too far from its integrative tradition towards an approach heavily rooted in disciplinary "silos". These "silos" represent what many see as an artificial separation of academic disciplines. This study reflects a growing concern that the approach to higher education that favors disciplinary specialization is poorly calibrated to the challenges and opportunities of our time. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics, and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students. It explores evidence regarding the value of integrating more STEMM curricula and labs into the academic programs of students majoring in the humanities and arts and evidence regarding the value of integrating curricula and experiences in the arts and humanities into college and university STEMM education programs.