Advances in Discretization Methods

Advances in Discretization Methods

Author: Giulio Ventura

Publisher: Springer

Published: 2016-08-24

Total Pages: 272

ISBN-13: 3319412469

DOWNLOAD EBOOK

This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.


Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics

Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics

Author: Timothy J. Barth

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 354

ISBN-13: 3662051893

DOWNLOAD EBOOK

As computational fluid dynamics (CFD) is applied to ever more demanding fluid flow problems, the ability to compute numerical fluid flow solutions to a user specified tolerance as well as the ability to quantify the accuracy of an existing numerical solution are seen as essential ingredients in robust numerical simulation. Although the task of accurate error estimation for the nonlinear equations of CFD seems a daunting problem, considerable effort has centered on this challenge in recent years with notable progress being made by the use of advanced error estimation techniques and adaptive discretization methods. To address this important topic, a special course wasjointly organized by the NATO Research and Technology Office (RTO), the von Karman Insti tute for Fluid Dynamics, and the NASA Ames Research Center. The NATO RTO sponsored course entitled "Error Estimation and Solution Adaptive Discretization in CFD" was held September 10-14, 2002 at the NASA Ames Research Center and October 15-19, 2002 at the von Karman Institute in Belgium. During the special course, a series of comprehensive lectures by leading experts discussed recent advances and technical progress in the area of numerical error estimation and adaptive discretization methods with spe cific emphasis on computational fluid dynamics. The lecture notes provided in this volume are derived from the special course material. The volume con sists of 6 articles prepared by the special course lecturers.


Analysis of Discretization Methods for Ordinary Differential Equations

Analysis of Discretization Methods for Ordinary Differential Equations

Author: Hans J. Stetter

Publisher: Springer Science & Business Media

Published: 2013-03-12

Total Pages: 407

ISBN-13: 3642654711

DOWNLOAD EBOOK

Due to the fundamental role of differential equations in science and engineering it has long been a basic task of numerical analysts to generate numerical values of solutions to differential equations. Nearly all approaches to this task involve a "finitization" of the original differential equation problem, usually by a projection into a finite-dimensional space. By far the most popular of these finitization processes consists of a reduction to a difference equation problem for functions which take values only on a grid of argument points. Although some of these finite difference methods have been known for a long time, their wide applica bility and great efficiency came to light only with the spread of electronic computers. This in tum strongly stimulated research on the properties and practical use of finite-difference methods. While the theory or partial differential equations and their discrete analogues is a very hard subject, and progress is consequently slow, the initial value problem for a system of first order ordinary differential equations lends itself so naturally to discretization that hundreds of numerical analysts have felt inspired to invent an ever-increasing number of finite-difference methods for its solution. For about 15 years, there has hardly been an issue of a numerical journal without new results of this kind; but clearly the vast majority of these methods have just been variations of a few basic themes. In this situation, the classical text book by P.


Numerical Mathematics and Advanced Applications ENUMATH 2017

Numerical Mathematics and Advanced Applications ENUMATH 2017

Author: Florin Adrian Radu

Publisher: Springer

Published: 2019-01-05

Total Pages: 1070

ISBN-13: 3319964151

DOWNLOAD EBOOK

This book collects many of the presented papers, as plenary presentations, mini-symposia invited presentations, or contributed talks, from the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH) 2017. The conference was organized by the University of Bergen, Norway from September 25 to 29, 2017. Leading experts in the field presented the latest results and ideas in the designing, implementation, and analysis of numerical algorithms as well as their applications to relevant, societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications. These discussions are upheld at the highest level of international expertise. The first ENUMATH conference was held in Paris in 1995 with successive conferences being held at various locations across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), and Ankara (2015).


Recent Advances in Radial Basis Function Collocation Methods

Recent Advances in Radial Basis Function Collocation Methods

Author: Wen Chen

Publisher: Springer Science & Business Media

Published: 2013-11-09

Total Pages: 98

ISBN-13: 3642395724

DOWNLOAD EBOOK

This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s problems. This book is intended to meet this need. Prof. Wen Chen and Dr. Zhuo-Jia Fu work at Hohai University. Prof. C.S. Chen works at the University of Southern Mississippi.


Advances and Current Trends in Biomechanics

Advances and Current Trends in Biomechanics

Author: Jorge Belinha

Publisher: CRC Press

Published: 2021-09-29

Total Pages: 614

ISBN-13: 1000483150

DOWNLOAD EBOOK

This volume presents a collection of peer-reviewed papers on several areas in the field of biomechanics, including biofabrication; biomaterials; cardiovascular biomechanics, biofluids and hemodynamics; biomechanics of the injury/impact; biomechanics of rehabilitation; sports biomechanics; biomechanics of the skull and spine; biomechanics of the musculoskeletal system; biomechanics orofacial; orthopaedic biomechanics; experimental and numerical biomechanics; tissue engineering, and biomedical devices. A collection of novelties and research outcomes presented at the 9th National Biomechanics Congress (CNB 2021, 19-20 February, Porto, Portugal), this book reflects the enthusiasm and intense activity of the Portuguese biomechanical community, as well as the multidisciplinary character of the field. The National Congress of Biomechanics (CNB) is a scientific meeting organized in Portugal under the auspices of the Portuguese Biomechanical Society (SPB).


Advances in Time-Domain Computational Electromagnetic Methods

Advances in Time-Domain Computational Electromagnetic Methods

Author: Qiang Ren

Publisher: John Wiley & Sons

Published: 2022-11-15

Total Pages: 724

ISBN-13: 1119808375

DOWNLOAD EBOOK

Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discuses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.


Advances in Boundary Element Techniques

Advances in Boundary Element Techniques

Author: James H. Kane

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 516

ISBN-13: 3642510272

DOWNLOAD EBOOK

The editors have published a select group of full length papers on boundary element analysis (BEA) photographed from camera ready manuscripts. The articles have been prepared by some of the most distinguished and prolific individuals in this field. More than half of these articles have been submitted by authors that participated in an International Forum on Boundary Element Methods, in Melbourne Australia, in the Summer of 1991. However, this volume is not a conference proceedings, as these authors have expanded their accounts to chapter length, and/or have tailored their expositions more toward the style employed in archival journal publications. The authors that did not participate in the International Forum have also adhered to the above mentioned philosophy. This work contains a definitive representation of the significant capabilities and applications currently available or under investigation that fall under the general category of advanced boundary element analysis. With treatments of mechanical, thermal, fluid, and electromagnetic phenomena, this book should thus be of value to graduate students, practitioners, and researchers in engineering, mathematics, and the physical sciences wishing to obtain a broader perspective or remain current in these important areas of computational simulation.


Advanced Numerical and Semi-Analytical Methods for Differential Equations

Advanced Numerical and Semi-Analytical Methods for Differential Equations

Author: Snehashish Chakraverty

Publisher: John Wiley & Sons

Published: 2019-04-16

Total Pages: 256

ISBN-13: 1119423422

DOWNLOAD EBOOK

Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.


Discretization Methods and Structural Optimization — Procedures and Applications

Discretization Methods and Structural Optimization — Procedures and Applications

Author: Hans A. Eschenauer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 377

ISBN-13: 3642837077

DOWNLOAD EBOOK

In recent years, the Finite Element Methods FEM were more and more employed in development and design departments as very fast working tools in order to determine stresses, deformations, eigenfrequencies etc. for all kinds of constructions under complex loading conditions. Meanwhile. very effective software systems have been developed by various research teams although some mathematical problems (e. g. convergence) have not been solved satisfac torily yet. In order to make further advances and to find a common language between mathe maticians and mechanicians the "Society for Applied Mathematics and Mechanics" (GAMM) agreed on the foundation of a special Committee: "Discretization Methods in Solid Mechanics" focussing on the following problems: - Structuring of various methods (displacement functions, hybrid and mixed approaches, etc. >, - Survey of approach functions (Lagrange-/Hermite-polynominals, Spline-functions), - Description of singularities, - Convergence and stability, - Practical and theoretical optimality to all mentioned issues (single and interacting). One of the basic aims of the GAMM-Committee is the interdisciplinary cooperation between mechanicians, mathematicians, and users which shall be intensified. Thus, on September 22, 1985 the committee decided to hold a seminar on "Structural Optimization" in order to allow an exchange of experiences and thoughts between the experts of finite element methods and those of structural optimization. A GAMM-seminar entitled "Discretization Methods and Structural Optimization - Procedures and Applications" was hold on October 5-7, 1988 at the Unversity of Siegen.