The present volume consists of papers written by students, colleagues and collaborators of Sreenivasa Rao Jammalamadaka from various countries, and covers a variety of research topics which he enjoys and contributed immensely to.
Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.
Probability and Mathematical Statistics: A Series of Monographs and Textbooks: Statistics of Directional Data aims to provide a systematic account of statistical theory and methodology for observations which are directions. The publication first elaborates on angular data and frequency distributions, descriptive measures, and basic concepts and theoretical models. Discussions focus on moments and measures of location and dispersion, distribution function, corrections for grouping, calculation of the mean direction and the circular variance, interrelations between different units of angular measurement, and diagrammatical representation. The book then examines fundamental theorems and distribution theory, point estimation, and tests for samples from von Mises populations. The text takes a look at non-parametric tests, distributions on spheres, and inference problems on the sphere. Topics include tests for axial data, point estimation, distribution theory, moments and limiting distributions, and tests of goodness of fit and tests of uniformity. The publication is a dependable reference for researchers interested in probability and mathematical statistics.
Modern Directional Statistics collects important advances in methodology and theory for directional statistics over the last two decades. It provides a detailed overview and analysis of recent results that can help both researchers and practitioners. Knowledge of multivariate statistics eases the reading but is not mandatory. The field of directional statistics has received a lot of attention over the past two decades, due to new demands from domains such as life sciences or machine learning, to the availability of massive data sets requiring adapted statistical techniques, and to technological advances. This book covers important progresses in distribution theory,high-dimensional statistics, kernel density estimation, efficient inference on directional supports, and computational and graphical methods. Christophe Ley is professor of mathematical statistics at Ghent University. His research interests include semi-parametrically efficient inference, flexible modeling, directional statistics and the study of asymptotic approximations via Stein’s Method. His achievements include the Marie-Jeanne Laurent-Duhamel prize of the Société Française de Statistique and an elected membership at the International Statistical Institute. He is associate editor for the journals Computational Statistics & Data Analysis and Econometrics and Statistics. Thomas Verdebout is professor of mathematical statistics at Université libre de Bruxelles (ULB). His main research interests are semi-parametric statistics, high- dimensional statistics, directional statistics and rank-based procedures. He has won an annual prize of the Belgian Academy of Sciences and is an elected member of the International Statistical Institute. He is associate editor for the journals Statistics and Probability Letters and Journal of Multivariate Analysis.
Observations which are directions, axes or rotations occur in many sciences, including astronomy, biology, earth sciences, image analysis, and medicine. To analyse such data it is necessary to use the techniques of directional statistics, in which the special structure of circles, spheres and rotation groups is taken into account. This book gives a unified and comprehensive account of directional statistics, presenting both the underlying statistical theory and the practical methodology. The book is divided into three parts. The first part concentrates on statistics on the circle. Topics covered include tests of uniformity, tests of goodness-of-fit, inference on von Mises distributions and non-parametric methods. The second part considers statistics on spheres of arbitrary dimension, and includes a detailed account of inference on the main distributions on spheres. Recent material on correlation, regression, time series, robust techniques, bootstrap methods, density estimation and curve fitting is presented. The third part considers statistics on more general sample spaces, in particular rotation groups, Stiefel manifolds, Grassmann manifolds and complex projective spaces. Shape analysis is considered from the perspective of directional statistics. This text will be invaluable not only to researchers in probability and statistics interested in the latest developments in directional statistics, but also to practitioners and researchers in many scientific fields, including astronomy, biology, computer vision, earth sciences and image analysis.
This book explains complex scientific concepts using simple and understandable illustrations and practical examples. For example, the competition between countries in the world economy is compared to motor racing, time savings are illustrated through the example of a masquerade ball, and the cyclical effect of time on the economy is reflected through the prism of changing seasons. It presents amazing phenomena and processes of economic time, including 'economic vintage', 'the time machine in the economy', 'youth' and 'old age' of the economy, its 'growing up', 'the economic calendar', 'catching up', and 'forward-looking' development. This book will therefore be interesting not only to members of the scientific community but also to non-academic readers — to everyone who wants to understand the nature of economic time.
Advanced Statistics with Applications in R fills the gap between several excellent theoretical statistics textbooks and many applied statistics books where teaching reduces to using existing packages. This book looks at what is under the hood. Many statistics issues including the recent crisis with p-value are caused by misunderstanding of statistical concepts due to poor theoretical background of practitioners and applied statisticians. This book is the product of a forty-year experience in teaching of probability and statistics and their applications for solving real-life problems. There are more than 442 examples in the book: basically every probability or statistics concept is illustrated with an example accompanied with an R code. Many examples, such as Who said π? What team is better? The fall of the Roman empire, James Bond chase problem, Black Friday shopping, Free fall equation: Aristotle or Galilei, and many others are intriguing. These examples cover biostatistics, finance, physics and engineering, text and image analysis, epidemiology, spatial statistics, sociology, etc. Advanced Statistics with Applications in R teaches students to use theory for solving real-life problems through computations: there are about 500 R codes and 100 datasets. These data can be freely downloaded from the author's website dartmouth.edu/~eugened. This book is suitable as a text for senior undergraduate students with major in statistics or data science or graduate students. Many researchers who apply statistics on the regular basis find explanation of many fundamental concepts from the theoretical perspective illustrated by concrete real-world applications.
This volume collects selected, peer-reviewed contributions from the 2nd Conference of the International Society for Nonparametric Statistics (ISNPS), held in Cádiz (Spain) between June 11–16 2014, and sponsored by the American Statistical Association, the Institute of Mathematical Statistics, the Bernoulli Society for Mathematical Statistics and Probability, the Journal of Nonparametric Statistics and Universidad Carlos III de Madrid. The 15 articles are a representative sample of the 336 contributed papers presented at the conference. They cover topics such as high-dimensional data modelling, inference for stochastic processes and for dependent data, nonparametric and goodness-of-fit testing, nonparametric curve estimation, object-oriented data analysis, and semiparametric inference. The aim of the ISNPS 2014 conference was to bring together recent advances and trends in several areas of nonparametric statistics in order to facilitate the exchange of research ideas, promote collaboration among researchers from around the globe, and contribute to the further development of the field.
"This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.