Quantum mechanics can describe the detailed structure and behavior of matter, from electrons, atoms, and molecules, to the whole universe. It is one of the fields of knowledge that yield extraordinary precessions, limited only by the computational resources available. Among these methods is density functional theory (DFT), which permits one to solve the equations of quantum mechanics more efficiently than with any related method.The present volume represents the most comprehensive summary currently available in density functional theory and its applications in chemistry from atomic physics to molecular dynamics. DFT is currently being used by more than fifty percent of computational chemists.
The present status of Density Functional Theory (DFT), which has evolved as the main technique for the study of matter at the atomistic level, is described in this volume. Knowing the behavior of atoms and molecules provides a sure avenue for the design of new materials with specific features and properties in many areas of science and technology. A technique based on purely first principles allowing large savings in time and money greatly benefits the specialist or designer of new materials.The range of areas where DFT is applied has expanded and continues to do so. Any area where a molecular system is the center of attention can be studied using DFT.The scope of the 22 chapters in this book amply testifies to this.
This is a comprehensive overview of state-of-the-art computational methods based on orbital-free formulation of density functional theory completed by the most recent developments concerning the exact properties, approximations, and interpretations of the relevant quantities in density functional theory.The book is a compilation of contributions stemming from a series of workshops which had been taking place since 2002. It not only chronicles many of the latest developments but also summarises some of the more significant ones. The chapters are mainly reviews of sub-domains but also include original research.
The book explains the fundamental ideas of density functional theory, and how this theory can be used as a powerful method for explaining and even predicting the properties of materials with stunning accuracy.
Density Functional Theory (DFT) is currently receiving a great deal of attention as chemists come to realize its important role as a tool for chemistry. This book covers the theoretical principles of DFT, and details its application to several contemporary problems. All current techniques are covered, many are critically assessed, and some proposals for the future are reviewed. The book demonstrates that DFT is a practical solution to the problems standard ab initio methods have with chemical accuracy.The book is aimed at both the theoretical chemist and the experimentalist who want to relate their experiments to the governing theory. It will prove a useful and enduring reference work.
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating the strengths and weaknesses of particular approaches or functionals. The structure and content of this book allow a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green's function or response functions - are introduced step by step, along with the actual DFT material. The same applies to basic notions of solid state theory, such as the Fermi surface of inhomogeneous, interacting systems. In fact, even the language of second quantization is introduced systematically in an Appendix for readers without formal training in many-body theory.
Modern day's electronic structure theory of molecules, solids, materials, biomolecules, etc., heavily depends on the astounding success of density functional theory (DFT). Ever since its inception, the theory has come a long way. Despite the fact that there are many disconcerting open questions yet to be answered, it has made a remarkable impact towards our understanding of increasingly larger and complex systems. This book presents some of the exciting, important, latest developments that took place in DFT, of late. The main focus lies on theoretical, computational and conceptual aspects including formalism, algorithm etc., with some applications.
Density Functional Theory is a rapidly developing branch of many-particle physics that has found applications in atomic, molecular, solid-state and nuclear physics. This book describes the conceptual framework of density functional theory and discusses in detail the derivation of explicit functionals from first principles as well as their application to Coulomb systems. Both non-relativistic and relativistic systems are treated. The connection of density functional theory with other many-body methods is highlighted. The presentation is self-contained; the book is, thus, well suited for a graduate course on density functional theory.
Density functional theory (DFT) is by now a well-established method for tackling the quantum mechanics of many-body systems. Originally applied to compute properties of atoms and simple molecules, DFT has quickly become a work horse for more complex applications in the chemical and materials sciences. The present set of lectures, spanning the whole range from basic principles to relativistic and time-dependent extensions of the theory, is the ideal introduction for graduate students or nonspecialist researchers wishing to familiarize themselves with both the basic and most advanced techniques in this field.