Contains research papers presented at The Third Euro-Conference on Parallel and Distributed Computing for Computational Mechanics, held in Weimar, Germany from 20-25 March 1999.
Huge earthquakes and tsunamis have caused serious damage to important structures such as civil infrastructure elements, buildings and power plants around the globe. To quantitatively evaluate such damage processes and to design effective prevention and mitigation measures, the latest high-performance computational mechanics technologies, which include telascale to petascale computers, can offer powerful tools. The phenomena covered in this book include seismic wave propagation in the crust and soil, seismic response of infrastructure elements such as tunnels considering soil-structure interactions, seismic response of high-rise buildings, seismic response of nuclear power plants, tsunami run-up over coastal towns and tsunami inundation considering fluid-structure interactions. The book provides all necessary information for addressing these phenomena, ranging from the fundamentals of high-performance computing for finite element methods, key algorithms of accurate dynamic structural analysis, fluid flows with free surfaces, and fluid-structure interactions, to practical applications with detailed simulation results. The book will offer essential insights for researchers and engineers working in the field of computational seismic/tsunami engineering.
Most of the papers in this volume were presented at the NATO Advanced Research Workshop High Performance Computing: Technology and Application, held in Cetraro, Italy from 24 to 26 of June, 1996. The main purpose of the Workshop was to discuss some key scientific and technological developments in high performance computing, identify significant trends and defme desirable research objectives. The volume structure corresponds, in general, to the outline of the workshop technical agenda: general concepts and emerging systems, software technology, algorithms and applications. One of the Workshop innovations was an effort to extend slightly the scope of the meeting from scientific/engineering computing to enterprise-wide computing. The papers on performance and scalability of database servers, and Oracle DBMS reflect this attempt We hope that after reading this collection of papers the readers will have a good idea about some important research and technological issues in high performance computing. We wish to give our thanks to the NATO Scientific and Environmental Affairs Division for being the principal sponsor for the Workshop. Also we are pleased to acknowledge other institutions and companies that supported the Workshop: European Union: European Commission DGIII-Industry, CNR: National Research Council of Italy, University of Calabria, Alenia Spazio, Centro Italiano Ricerche Aerospaziali, ENEA: Italian National Agency for New Technology, Energy and the Environment, Fujitsu, Hewlett Packard-Convex, Hitachi, NEC, Oracle, and Silicon Graphics-Cray Research. Editors January 1997 vii LIST OF CONTRIBUTORS Ecole Nonnale Su¢rieure de Lyon, 69364 Abarbanel. Robert M.
This book brings together some 20 chapters on state-of-the-art research in the broad field of computational plasticity with applications in civil and mechanical engineering, metal forming processes, geomechanics, nonlinear structural analysis, composites, biomechanics and multi-scale analysis of materials, among others. The chapters are written by world leaders in the different fields of computational plasticity.
Includes the research papers that were presented at The First Euro-Conference on Parallel and Distributed Computing for Computational Mechanics, which was held from 26th April - 1st May 1997, at Lochinver, Scotland.
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.
Problems demanding globally optimal solutions are ubiquitous, yet many are intractable when they involve constrained functions having many local optima and interacting, mixed-type variables. The differential evolution (DE) algorithm is a practical approach to global numerical optimization which is easy to understand, simple to implement, reliable, and fast. Packed with illustrations, computer code, new insights, and practical advice, this volume explores DE in both principle and practice. It is a valuable resource for professionals needing a proven optimizer and for students wanting an evolutionary perspective on global numerical optimization.
There is a need to solve problems in solid and fluid mechanics that currently exceed the resources of current and foreseeable supercomputers. The issue revolves around the number of degrees of freedom of simultaneous equations that one needs to accurately describe the problem, and the computer storage and speed limitations which prohibit such solutions. The goals of tHis symposium were to explore some of the latest work being done in both industry and academia to solve such extremely large problems, and to provide a forum for the discussion and prognostication of necessary future direc tions of both man and machine. As evidenced in this proceedings we believe these goals were met. Contained in this volume are discussions of: iterative solvers, and their application to a variety of problems, e.g. structures, fluid dynamics, and structural acoustics; iterative dynamic substructuring and its use in structural acoustics; the use of the boundary element method both alone and in conjunction with the finite element method; the application of finite difference methods to problems of incompressible, turbulent flow; and algorithms amenable to concurrent computations and their applications. Furthermore, discussions of existing computational shortcomings from the big picture point of view are presented that include recommendations for future work.
AI!, in the earlier conferences (Tokyo, 1986; Atlanta, 1988, Melbourne, 1991; and Hong Kong, 1992) the response to the call for presentations at ICES-95 in Hawaii has been overwhelming. A very careful screening of the extended abstracts resulted in about 500 paper being accepted for presentation. Out of these, written versions of about 480 papers reached the conference secretariat in Atlanta in time for inclusion in these proceedings. The topics covered at ICES-95 range over the broadest spectrum of computational engineering science. The editors thank the international scientific committee, for their advice and encouragement in making ICES-95 a successful scientific event. Special thanks are expressed to the International Association for Boundary Elements Methods for hosting IABEM-95 in conjunction with ICES-95. The editors here express their deepest gratitude to Ms. Stacy Morgan for her careful handling of a myriad of details of ICES-95, often times under severe time constraints. The editors hope that the readers of this proceedings will find a kaleidoscopic view of computational engineering in the year 1995, as practiced in various parts of the world. Satya N. Atluri Atlanta, Georgia, USA Genki Yagawa Tokyo,Japan Thomas A. Cruse Nashville, TN, USA Organizing Committee Professor Genki Yagawa, University of Tokyo, Japan, Chair Professor Satya Atluri, Georgia Institute of Technology, U.S.A.
Includes the keynote lectures presented at The Second Euro-Conference on Parallel and Distributed Computing for Computational Mechanics, held in Sintra, Portugal on 4-9 April 1998.