This proceedings volume offer a review on Catalyst Design including recent advances and theories. It also includes assessments of the development of long-term research activities in catalysis at ICS. Topics covered include catalytic materials, organometallic chemistry, supports and support interactions and spectroscopic methods, and are presented by top-level international specialists such as J Brown (Oxford); W Keim (Aachen); R Prins (Zurich); C N R Rao (Bangalore); P Ratnasamy (Pune); R Sanchez-Delgado (Caracas); and R Ugo (Milan).
The workshop organized by the international centre for science and technology provided an occasion for researchers active both in homogeneous and heterogeneous catalysis to meet and look for common interpretations and a common language.
Catalysis is central to the chemical industry, as it is directly or involved in the production of almost all useful chemical products. In this book the authors, present the definitive account of industrial catalytic processes. Throughout Fundamentals of Industrial Catalytic Processes the information is illustrated with many case studies and problems. This book is valuable to anyone wanting a clear account of industrial catalytic processes, but is particularly useful to industrial and academic chemists and engineers and graduate working on catalysis. This book also: Covers fundamentals of catalytic processes, including chemistry, catalyst preparation, properties and reaction engineering. Addresses heterogeneous catalytic processes employed by industry. Provides detailed data on existing catalysts and catalytic reactions, process design and chemical engineering. Covers catalysts used in fuel cells.
There is an increasing need to find cost-effective and environmentally sound methods of converting natural resources into fuels, chemicals and energy; catalysts are pivotal to such processes. Catalysis highlights major developments in this area. Coverage of this Specialist Periodical Report includes all major areas of heterogeneous catalysis. n each volume, specific areas of current interest are reviewed. Examples of topics include experimental methods, acid/base catalysis, materials synthesis, environmental catalysis, and syngas conversion.
Solid State Chemistry today is a frontier area of mainstream chemistry, and plays a vital role in the development of materials. The present work, consisting of a selection of Prof. C N R Rao's papers, covers most of the important aspects of solid state chemistry and provides the flavor of the subject, showing how the subject has evolved over the years. The book is up-to-date, and will be useful to students, teachers, beginning researchers and practitioners in solid state chemistry as well as in the broader area of materials science.
Unsteady-state operations of catalytic reactors provide plentiful opportunities for research and commercial realization of efficient heterogeneous catalytic processes. Forced unsteady state conditions generate unique distributions of process parameters and catalyst states often unattainable with traditional, steady-state operation. The unsteady-states can be created by periodic changes in input flow parameters, such as changes in inlet temperature and composition, catalyst circulation through reaction and regeneration zones, or periodic flow reversals through fixed catalyst bed. This can result in increased productivity, selectivity, capital savings and operating cost reduction (higher energy efficiency). Efficient environmental technologies for treatment of toxic emissions, acid rain and greenhouse gas emissions can also be developed using the unsteady-state concept. The Proceedings communicate recent progress in these areas of research and promote future development. The aims are to establish relations between academia, industry, engineers and scientists from all over the world, to stimulate new catalytic technologies as well as fundamental research, and to create new concepts for the development of effective catalytic systems. It presents the most up-to-date research in catalysis. - contains the most recent developments in catalytic research - includes research finding as well as their application to industry - a thorough source of information on the latest developments of industrial catalysis in Japan
Recent development of olefin polymerization catalysts has caused marked changes in both industrial and academic research. Industrial use of homogeneous metallocene catalysts has already begun in the fields of high density polyethylene and syndiotactic polypropylene. Moreover, important data have been obtained from academic investigations which have proved useful for understanding conventional heterogeneous Ziegler-Natta catalysts. From the industrial viewpoint, however, heterogeneous high-yield catalysts seem to be more important.The present volume contains invited lectures and contributed papers. The following topics are covered: (1) Heterogeneous Catalysts, (2) Metallocene Catalysts and (3) New Trends in the Polyolefin Industry.
The Fourth International Natural Gas Conversion Symposium was attended by 180 delegates from 25 countries. Representation was evenly balanced between industry and academia. The opening address was delivered by Mr Roy Pithey, Chairman of South Africa's Central Energy Fund, who dealt with the importance and utilisation of natural gas in sub-Saharan Africa. Plenary lectures were presented by Professors E. Iglesia (Catalyst design and selectivity for F-T synthesis) and E.E. Wolf (Oxidative Coupling Methane). A number of keynote addresses were delivered:- Dr T. Fleisch (Amoco) described the use of DME as a transport fuel and the work which has been carried out in this area in collaboration with Haldor Topsoe- Professor L.D. Schmidt (Univ. of Minnesota) explained his work on the direct conversion of methane at high velocities- Dr B. Jager (SASTECH R & D) reported on the recent developments in slurry and fluidized bed F-T reactors as SASOL- Dr J. Rostrup-Nielsen (Haldor Topsoe) discussed the role of catalysis in the conversion of natural gas for power generation.Areas signalled for further research were: direct conversion of methane to intermediate monomers; methanol conversion to higher alcohols; CO/H2 conversion in a commercially viable route to higher alcohols; and CO/H2 conversion to high quality gasoline. It is obvious that such developments would fit into the energy cycle which has moved from wood, to coal, to oil, to gas, and will most probably move to hydrogen.