Advancement of Data Processing Methods for Artificial and Computing Intelligence

Advancement of Data Processing Methods for Artificial and Computing Intelligence

Author: Seema Rawat

Publisher: CRC Press

Published: 2024-04-26

Total Pages: 431

ISBN-13: 1003810950

DOWNLOAD EBOOK

This book emphasizes the applications of advances in data processing methods for Artificial Intelligence in today's fast-changing world, as well as to serve society through research, innovation, and development in this field. This book is applicable to a wide range of data that contribute to data science concerns and can be used to promote research in this high-potential new field. People's perceptions of the world and how they conduct their lives have changed dramatically as a result of technological advancements. The world has been gripped by technology, and the advances that are being made every day are undeniably transforming the planet. In the domains of Big Data, engineering, and data science, this cutting-edge technology is ready to support us. Artificial intelligence (AI) is a current research topic because it can be applied to a wide range of applications and disciplines to solve complicated problems and find optimal solutions. In research, medicine, technology, and the social sciences, the benefits of AI have already been proven. Data science, also known as pattern analytics and mining, is a technique for extracting useful and relevant information from databases, enabling better decision-making and strategy formulation in a range of fields. As a result of the exponential growth of data in recent years, the combined notions of big data and AI have given rise to many study areas, such as scale-up behaviour from classical algorithms. Furthermore, combining numerous AI technologies from other areas (such as vision, security, control, and biology) in order to build efficient and durable systems that interact in the real world is a new problem. Despite recent improvements in fundamental AI technologies, the integration of these skills into larger, trustworthy, transparent, and maintainable systems is still in its development. Both conceptually and practically, there are a number of unanswered issues.


Deploying Machine Learning

Deploying Machine Learning

Author: Robbie Allen

Publisher: Addison-Wesley Professional

Published: 2019-05

Total Pages: 99998

ISBN-13: 9780135226209

DOWNLOAD EBOOK

Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.


Funding a Revolution

Funding a Revolution

Author: National Research Council

Publisher: National Academies Press

Published: 1999-02-11

Total Pages: 300

ISBN-13: 0309062780

DOWNLOAD EBOOK

The past 50 years have witnessed a revolution in computing and related communications technologies. The contributions of industry and university researchers to this revolution are manifest; less widely recognized is the major role the federal government played in launching the computing revolution and sustaining its momentum. Funding a Revolution examines the history of computing since World War II to elucidate the federal government's role in funding computing research, supporting the education of computer scientists and engineers, and equipping university research labs. It reviews the economic rationale for government support of research, characterizes federal support for computing research, and summarizes key historical advances in which government-sponsored research played an important role. Funding a Revolution contains a series of case studies in relational databases, the Internet, theoretical computer science, artificial intelligence, and virtual reality that demonstrate the complex interactions among government, universities, and industry that have driven the field. It offers a series of lessons that identify factors contributing to the success of the nation's computing enterprise and the government's role within it.


Technological Advancements in Data Processing for Next Generation Intelligent Systems

Technological Advancements in Data Processing for Next Generation Intelligent Systems

Author: Sharma, Shanu

Publisher: IGI Global

Published: 2024-03-18

Total Pages: 380

ISBN-13:

DOWNLOAD EBOOK

Technological Advancements in Data Processing for Next Generation Intelligent Systems presents an in-depth exploration of cutting-edge data processing technologies that drive the development of next-generation intelligent systems in the context of the digital transformation era. This comprehensive book delves into the role data plays as a critical asset for organizations across diverse industries, and how recent technological breakthroughs have unlocked unprecedented potential for handling vast data volumes and real-time analysis. The book begins by providing a thorough overview of novel technologies such as artificial intelligence (AI) or machine learning (ML), edge computing, federated learning, quantum computing, and more. These revolutionary technologies, when integrated with big data frameworks, in-memory computing, and AI/ML algorithms, have transformed data processing capabilities, enabling the creation of intelligent systems that fuel innovation, optimize operations, and deliver personalized experiences. The ultimate aim of this integration is to empower devices with the ability to make autonomous intelligent decisions, maximizing computing power. This book serves as a valuable resource for research scholars, academicians, and industry professionals working towards the future advancement of optimized intelligent systems and intelligent data processing approaches. The chapters encompass a wide range of topics, including architecture and frameworks for intelligent systems, applications in diverse domains, cloud-based solutions, quantum processing, federated learning, in-memory data processing, real-time stream processing, trustworthy AI for Internet of Things (IoT) sensory data, and more.


Artificial Intelligence Techniques for Satellite Image Analysis

Artificial Intelligence Techniques for Satellite Image Analysis

Author: D. Jude Hemanth

Publisher: Springer Nature

Published: 2019-11-13

Total Pages: 277

ISBN-13: 3030241785

DOWNLOAD EBOOK

The main objective of this book is to provide a common platform for diverse concepts in satellite image processing. In particular it presents the state-of-the-art in Artificial Intelligence (AI) methodologies and shares findings that can be translated into real-time applications to benefit humankind. Interdisciplinary in its scope, the book will be of interest to both newcomers and experienced scientists working in the fields of satellite image processing, geo-engineering, remote sensing and Artificial Intelligence. It can be also used as a supplementary textbook for graduate students in various engineering branches related to image processing.


Advances in Data Science and Computing Technologies

Advances in Data Science and Computing Technologies

Author: Basabi Chakraborty

Publisher: Springer Nature

Published: 2023-09-29

Total Pages: 738

ISBN-13: 981993656X

DOWNLOAD EBOOK

This book presents selected research papers on current developments in artificial intelligence (AI) and data sciences from the International Conference on Advances in Data Science and Computing Technologies, ADSC 2022. The book covers topics such as soft computing techniques, AI, optical communication systems, application of Internet of Things, hybrid and renewable energy sources, cloud and mobile computing, deep machine learning, data networks & securities. The book discusses various aspects of these topics, e.g., technological considerations, product implementation, and application issues. The volume will serve as a reference resource for researchers and practitioners in academia and industry.


Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare

Author: Adam Bohr

Publisher: Academic Press

Published: 2020-06-21

Total Pages: 385

ISBN-13: 0128184396

DOWNLOAD EBOOK

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data


Applied Machine Learning for Smart Data Analysis

Applied Machine Learning for Smart Data Analysis

Author: Nilanjan Dey

Publisher: CRC Press

Published: 2019-05-20

Total Pages: 225

ISBN-13: 0429804571

DOWNLOAD EBOOK

The book focuses on how machine learning and the Internet of Things (IoT) has empowered the advancement of information driven arrangements including key concepts and advancements. Ontologies that are used in heterogeneous IoT environments have been discussed including interpretation, context awareness, analyzing various data sources, machine learning algorithms and intelligent services and applications. Further, it includes unsupervised and semi-supervised machine learning techniques with study of semantic analysis and thorough analysis of reviews. Divided into sections such as machine learning, security, IoT and data mining, the concepts are explained with practical implementation including results. Key Features Follows an algorithmic approach for data analysis in machine learning Introduces machine learning methods in applications Address the emerging issues in computing such as deep learning, machine learning, Internet of Things and data analytics Focuses on machine learning techniques namely unsupervised and semi-supervised for unseen and seen data sets Case studies are covered relating to human health, transportation and Internet applications


Advancement of Intelligent Computational Methods and Technologies

Advancement of Intelligent Computational Methods and Technologies

Author: O.P. Verma

Publisher: CRC Press

Published: 2024-06-30

Total Pages: 206

ISBN-13: 1040045936

DOWNLOAD EBOOK

The compiled volume originates from the notable contributions presented at the 1st International Conference on Advancementof Intelligent Computational Methods and Technologies (AICMT2023), which took place in a hybrid format on June 27, 2023,at Delhi Technical Campus, Greater Noida, Uttar Pradesh, India. This comprehensive collection serves as an exploration into the dynamic domain of intelligent computational methods and technologies, offering insights into the latest and upcoming trends in computation methods. AICMT2023’s scope encompasses the evolutionary trajectory of computational methods, addressing pertinent issues in real time implementation, delving into the emergence of new intelligent technologies, exploring next-generation problem-solving methodologies, and other interconnected areas. The conference is strategically designed to spotlight current research trendswithin the field, fostering a vibrant research culture and contributing to the collective knowledge base.