Uncertainty Quantification

Uncertainty Quantification

Author: Christian Soize

Publisher: Springer

Published: 2017-04-24

Total Pages: 344

ISBN-13: 3319543393

DOWNLOAD EBOOK

This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.


Optimization Under Uncertainty with Applications to Aerospace Engineering

Optimization Under Uncertainty with Applications to Aerospace Engineering

Author: Massimiliano Vasile

Publisher: Springer Nature

Published: 2021-02-15

Total Pages: 573

ISBN-13: 3030601668

DOWNLOAD EBOOK

In an expanding world with limited resources, optimization and uncertainty quantification have become a necessity when handling complex systems and processes. This book provides the foundational material necessary for those who wish to embark on advanced research at the limits of computability, collecting together lecture material from leading experts across the topics of optimization, uncertainty quantification and aerospace engineering. The aerospace sector in particular has stringent performance requirements on highly complex systems, for which solutions are expected to be optimal and reliable at the same time. The text covers a wide range of techniques and methods, from polynomial chaos expansions for uncertainty quantification to Bayesian and Imprecise Probability theories, and from Markov chains to surrogate models based on Gaussian processes. The book will serve as a valuable tool for practitioners, researchers and PhD students.


Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications

Advances in Uncertainty Quantification and Optimization Under Uncertainty with Aerospace Applications

Author: Massimiliano Vasile

Publisher: Springer Nature

Published: 2022-01-27

Total Pages: 448

ISBN-13: 3030805425

DOWNLOAD EBOOK

The 2020 International Conference on Uncertainty Quantification & Optimization gathered together internationally renowned researchers in the fields of optimization and uncertainty quantification. The resulting proceedings cover all related aspects of computational uncertainty management and optimization, with particular emphasis on aerospace engineering problems. The book contributions are organized under four major themes: Applications of Uncertainty in Aerospace & Engineering Imprecise Probability, Theory and Applications Robust and Reliability-Based Design Optimisation in Aerospace Engineering Uncertainty Quantification, Identification and Calibration in Aerospace Models This proceedings volume is useful across disciplines, as it brings the expertise of theoretical and application researchers together in a unified framework.


Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification

Author: Roger Ghanem

Publisher: Springer

Published: 2016-05-08

Total Pages: 0

ISBN-13: 9783319123844

DOWNLOAD EBOOK

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.


Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling

Author: Yan Wang

Publisher: Woodhead Publishing

Published: 2020-03-12

Total Pages: 604

ISBN-13: 0081029411

DOWNLOAD EBOOK

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.


Aerospace System Analysis and Optimization in Uncertainty

Aerospace System Analysis and Optimization in Uncertainty

Author: Loïc Brevault

Publisher: Springer Nature

Published: 2020-08-26

Total Pages: 477

ISBN-13: 3030391264

DOWNLOAD EBOOK

Spotlighting the field of Multidisciplinary Design Optimization (MDO), this book illustrates and implements state-of-the-art methodologies within the complex process of aerospace system design under uncertainties. The book provides approaches to integrating a multitude of components and constraints with the ultimate goal of reducing design cycles. Insights on a vast assortment of problems are provided, including discipline modeling, sensitivity analysis, uncertainty propagation, reliability analysis, and global multidisciplinary optimization. The extensive range of topics covered include areas of current open research. This Work is destined to become a fundamental reference for aerospace systems engineers, researchers, as well as for practitioners and engineers working in areas of optimization and uncertainty. Part I is largely comprised of fundamentals. Part II presents methodologies for single discipline problems with a review of existing uncertainty propagation, reliability analysis, and optimization techniques. Part III is dedicated to the uncertainty-based MDO and related issues. Part IV deals with three MDO related issues: the multifidelity, the multi-objective optimization and the mixed continuous/discrete optimization and Part V is devoted to test cases for aerospace vehicle design.


Uncertainty Quantification of Stochastic Defects in Materials

Uncertainty Quantification of Stochastic Defects in Materials

Author: Liu Chu

Publisher: CRC Press

Published: 2021-12-16

Total Pages: 179

ISBN-13: 1000506096

DOWNLOAD EBOOK

Uncertainty Quantification of Stochastic Defects in Materials investigates the uncertainty quantification methods for stochastic defects in material microstructures. It provides effective supplementary approaches for conventional experimental observation with the consideration of stochastic factors and uncertainty propagation. Pursuing a comprehensive numerical analytical system, this book establishes a fundamental framework for this topic, while emphasizing the importance of stochastic and uncertainty quantification analysis and the significant influence of microstructure defects on the material macro properties. Key Features Consists of two parts: one exploring methods and theories and the other detailing related examples Defines stochastic defects in materials and presents the uncertainty quantification for defect location, size, geometrical configuration, and instability Introduces general Monte Carlo methods, polynomial chaos expansion, stochastic finite element methods, and machine learning methods Provides a variety of examples to support the introduced methods and theories Applicable to MATLAB® and ANSYS software This book is intended for advanced students interested in material defect quantification methods and material reliability assessment, researchers investigating artificial material microstructure optimization, and engineers working on defect influence analysis and nondestructive defect testing.


Uncertainty Quantification

Uncertainty Quantification

Author: Ralph C. Smith

Publisher: SIAM

Published: 2013-12-02

Total Pages: 400

ISBN-13: 161197321X

DOWNLOAD EBOOK

The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.


An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

Author: Luis Tenorio

Publisher: SIAM

Published: 2017-07-06

Total Pages: 275

ISBN-13: 1611974917

DOWNLOAD EBOOK

Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.


Spectral Methods for Uncertainty Quantification

Spectral Methods for Uncertainty Quantification

Author: Olivier Le Maitre

Publisher: Springer Science & Business Media

Published: 2010-03-11

Total Pages: 542

ISBN-13: 9048135206

DOWNLOAD EBOOK

This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.