Progress in Hybrid RANS-LES Modelling

Progress in Hybrid RANS-LES Modelling

Author: Yannick Hoarau

Publisher: Springer Nature

Published: 2019-11-01

Total Pages: 412

ISBN-13: 3030276074

DOWNLOAD EBOOK

This book gathers the proceedings of the Seventh Symposium on Hybrid RANS-LES Methods, which was held on September 17-19 in Berlin, Germany. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, Lattice-Bolzman methods and turbulence-resolving applications and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.


Progress in Hybrid RANS-LES Modelling

Progress in Hybrid RANS-LES Modelling

Author: Yannick Hoarau

Publisher: Springer

Published: 2018-03-09

Total Pages: 509

ISBN-13: 3319700316

DOWNLOAD EBOOK

This book reports on the latest developments in computational fluid dynamics and turbulence modeling, with a special emphasis on hybrid RANS-LES methods and their industrial applications. It gathers the proceedings of the Sixth Symposium on Hybrid RANS-LES Methods, held on September 26-28 in Strasbourg, France. The different chapters covers a wealth of topics such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. Further topics include wall-modelled Large Eddy Simulation (WMLES), embedded LES, Lattice-Bolzman methods, turbulence-resolving applications and comparisons between LES, hybrid RANS-LES and URANS methods. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics.


Advances in Hybrid RANS-LES Modelling

Advances in Hybrid RANS-LES Modelling

Author: Shia-Hui Peng

Publisher: Springer Science & Business Media

Published: 2008-01-24

Total Pages: 343

ISBN-13: 3540778152

DOWNLOAD EBOOK

Turbulence modelling has long been, and will remain, one of the most important t- ics in turbulence research, challenging scientists and engineers in the academic world and in the industrial society. Over the past decade, Detached Eddy Simulation (DES) and other hybrid RANS-LES methods have received increasing attention from the turbulence-research community, as well as from industrial CFD engineers. Indeed, as an engineering modelling approach, hybrid RANS-LES methods have acquired a remarkable profile in modelling turbulent flows of industrial interest in relation to, for example, transportation, energy production and the environment. The advantage exploited with hybrid RANS-LES modelling approaches, being - tentially more computationally efficient than LES and more accurate than (unsteady) RANS, has motivated numerous research and development activities. These activities, together with industrial applications, have been further facilitated over the recent years by the rapid development of modern computing resources. As a European initiative, the EU project DESider (Detached Eddy Simulation for Industrial Aerodynamics, 2004-2007), has been one of the earliest and most systematic international R&D effort with its focus on development, improvement and applications of a variety of existing and new hybrid RANS-LES modelling approaches, as well as on related numerical issues. In association with the DESider project, two subsequent international symposia on hybrid RANS-LES methods have been arranged in Stockholm (Sweden, 2005) and in Corfu (Greece, 2007), respectively. The present book is a result of the Second Symposium on Hybrid RANS-LES Methods, held in Corfu, Greece, 17-18 June 2007.


A Dynamic Hybrid RANS/LES Modeling Methodology for Turbulent/transitional Flow Field Prediction

A Dynamic Hybrid RANS/LES Modeling Methodology for Turbulent/transitional Flow Field Prediction

Author: Mohammad Faridul Alam

Publisher:

Published: 2013

Total Pages: 138

ISBN-13:

DOWNLOAD EBOOK

A dynamic hybrid Reynolds-averaged Navier-Stokes (RANS)-Large Eddy Simulation (LES) modeling framework has been investigated and further developed to improve the Computational Fluid Dynamics (CFD) prediction of turbulent flow features along with laminar-to-turbulent transitional phenomena. In recent years, the use of hybrid RANS/LES (HRL) models has become more common in CFD simulations, since HRL models offer more accuracy than RANS in regions of flow separation at a reduced cost relative to LES in attached boundary layers. The first part of this research includes evaluation and validation of a dynamic HRL (DHRL) model that aims to address issues regarding the RANS-to-LES zonal transition and explicit grid dependence, both of which are inherent to most current HRL models. Simulations of two test cases—flow over a backward facing step and flow over a wing with leading-edge ice accretion—were performed to assess the potential of the DHRL model for predicting turbulent features involved in mainly unsteady separated flow. The DHRL simulation results are compared with experimental data, along with the computational results for other HRL and RANS models. In summary, these comparisons demonstrate that the DHRL framework does address many of the weaknesses inherent in most current HRL models. Although HRL models are widely used in turbulent flow simulations, they have limitations for transitional flow predictions. Most HRL models include a fully turbulent RANS component for attached boundary layer regions. The small number of HRL models that do include transition-sensitive RANS models have issues related to the RANS model itself and to the zonal transition between RANS and LES. In order to address those issues, a new transition-sensitive HRL modeling methodology has been developed that includes the DHRL methodology and a physics-based transition-sensitive RANS model. The feasibility of the transition-sensitive dynamic HRL (TDHRL) model has been investigated by performing numerical simulations of the flows over a circular cylinder and a PAK-B airfoil. Comparisons with experimental data along with computational results from other HRL and RANS models illustrate the potential of TDHRL model for accurately capturing the physics of complex transitional flow phenomena.


Progress in Hybrid RANS-LES Modelling

Progress in Hybrid RANS-LES Modelling

Author: Song Fu

Publisher: Springer Science & Business Media

Published: 2012-08-14

Total Pages: 508

ISBN-13: 3642318185

DOWNLOAD EBOOK

The present book contains contributions presented at the Fourth Symposium on Hybrid RANS-LES Methods, held in Beijing, China, 28-30 September 2011, being a continuation of symposia taking place in Stockholm (Sweden, 2005), in Corfu (Greece, 2007), and Gdansk (Poland, 2009). The contributions to the last two symposia were published as NNFM, Vol. 97 and Vol. 111. At the Beijing symposium, along with seven invited keynotes, another 46 papers (plus 5 posters) were presented addressing topics on Novel turbulence-resolving simulation and modelling, Improved hybrid RANS-LES methods, Comparative studies of difference modelling methods, Modelling-related numerical issues and Industrial applications.. The present book reflects recent activities and new progress made in the development and applications of hybrid RANS-LES methods in general.


Progress in Hybrid RANS-LES Modelling

Progress in Hybrid RANS-LES Modelling

Author: Sharath Girimaji

Publisher: Springer

Published: 2015-02-20

Total Pages: 481

ISBN-13: 331915141X

DOWNLOAD EBOOK

This book gathers the proceedings of the Fifth Symposium on Hybrid RANS-LES Methods, which was held on March 19-21 in College Station, Texas, USA. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.


Critical Assessment of Hybrid RANS-LES Modeling for Attached and Separated Flows

Critical Assessment of Hybrid RANS-LES Modeling for Attached and Separated Flows

Author: Mohammad Faridul Alam

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The objective of this study is to evaluate a recently proposed dynamic hybrid Reynolds-averaged Navier-Stokes (RANS)-Large Eddy Simulation (LES) modeling framework that seeks to effectively address issues regarding RANS-to-LES transition and explicit grid dependence inherent in most current hybrid RANS-LES (HRL) models. RANS-to-LES transition in the investigated dynamic HRL (DHRL) model is based on the physical concept of maintaining continuity of total turbulence production using two rigorously separated turbulent stress parameters, where one is obtained from the RANS model and the other from the LES model. Computations of two canonical test cases-two-dimensional turbulent channel flow and backward facing step flow-were performed to assess the potential of the DHRL model for predicting both attached and separated turbulent flows. This investigation attempts to evaluate the ability of the DHRL method to reproduce the detailed physics of attached and separated turbulent flows, as well as to resolve the issues concerning log-layer mismatch and delayed break down of separated shear layers. The DHRL model simulation results are compared with experimental and DNS data, along with the computational results for other HRL and RANS models. In summary, these comparisons demonstrate that the DHRL framework does address many of the weaknesses inherent in most current HRL models.


Turbulence Modelling Approaches

Turbulence Modelling Approaches

Author: Konstantin Volkov

Publisher: BoD – Books on Demand

Published: 2017-07-26

Total Pages: 252

ISBN-13: 9535133497

DOWNLOAD EBOOK

Accurate prediction of turbulent flows remains a challenging task despite considerable work in this area and the acceptance of CFD as a design tool. The quality of the CFD calculations of the flows in engineering applications strongly depends on the proper prediction of turbulence phenomena. Investigations of flow instability, heat transfer, skin friction, secondary flows, flow separation, and reattachment effects demand a reliable modelling and simulation of the turbulence, reliable methods, accurate programming, and robust working practices. The current scientific status of simulation of turbulent flows as well as some advances in computational techniques and practical applications of turbulence research is reviewed and considered in the book.