Advanced Takagi‒Sugeno Fuzzy Systems

Advanced Takagi‒Sugeno Fuzzy Systems

Author: Abdellah Benzaouia

Publisher: Springer

Published: 2014-06-07

Total Pages: 317

ISBN-13: 3319056395

DOWNLOAD EBOOK

This monograph puts the reader in touch with a decade’s worth of new developments in the field of fuzzy control specifically those of the popular Takagi-Sugeno (T-S) type. New techniques for stabilizing control analysis and design based on multiple Lyapunov functions and linear matrix inequalities (LMIs), are proposed. All the results are illustrated with numerical examples and figures and a rich bibliography is provided for further investigation. Control saturations are taken into account within the fuzzy model. The concept of positive invariance is used to obtain sufficient asymptotic stability conditions for the fuzzy system with constrained control inside a subset of the state space. The authors also consider the non-negativity of the states. This is of practical importance in many chemical, physical and biological processes that involve quantities that have intrinsically constant and non-negative sign: concentration of substances, level of liquids, etc. Results for linear systems are then extended to linear systems with delay. It is shown that LMI techniques can usually handle the new constraint of non-negativity of the states when care is taken to use an adequate Lyapunov function. From these foundations, the following further problems are also treated: · asymptotic stabilization of uncertain T-S fuzzy systems with time-varying delay, focusing on delay-dependent stabilization synthesis based on parallel distributed controller (PDC); · asymptotic stabilization of uncertain T-S fuzzy systems with multiple delays, focusing on delay-dependent stabilization synthesis based on PDC with results obtained under linear programming; · design of delay-independent, observer-based, H-infinity control for T–S fuzzy systems with time varying delay; and · asymptotic stabilization of 2-D T–S fuzzy systems. Advanced Takagi–Sugeno Fuzzy Systems provides researchers and graduate students interested in fuzzy control systems with further approaches based LMI and LP.


Fuzzy Control and Identification

Fuzzy Control and Identification

Author: John H. Lilly

Publisher: John Wiley & Sons

Published: 2011-03-10

Total Pages: 199

ISBN-13: 1118097815

DOWNLOAD EBOOK

This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.


Fuzzy Control Systems Design and Analysis

Fuzzy Control Systems Design and Analysis

Author: Kazuo Tanaka

Publisher: John Wiley & Sons

Published: 2004-04-07

Total Pages: 321

ISBN-13: 0471465224

DOWNLOAD EBOOK

A comprehensive treatment of model-based fuzzy control systems This volume offers full coverage of the systematic framework for the stability and design of nonlinear fuzzy control systems. Building on the Takagi-Sugeno fuzzy model, authors Tanaka and Wang address a number of important issues in fuzzy control systems, including stability analysis, systematic design procedures, incorporation of performance specifications, numerical implementations, and practical applications. Issues that have not been fully treated in existing texts, such as stability analysis, systematic design, and performance analysis, are crucial to the validity and applicability of fuzzy control methodology. Fuzzy Control Systems Design and Analysis addresses these issues in the framework of parallel distributed compensation, a controller structure devised in accordance with the fuzzy model. This balanced treatment features an overview of fuzzy control, modeling, and stability analysis, as well as a section on the use of linear matrix inequalities (LMI) as an approach to fuzzy design and control. It also covers advanced topics in model-based fuzzy control systems, including modeling and control of chaotic systems. Later sections offer practical examples in the form of detailed theoretical and experimental studies of fuzzy control in robotic systems and a discussion of future directions in the field. Fuzzy Control Systems Design and Analysis offers an advanced treatment of fuzzy control that makes a useful reference for researchers and a reliable text for advanced graduate students in the field.


Evolving Intelligent Systems

Evolving Intelligent Systems

Author: Plamen Angelov

Publisher: John Wiley & Sons

Published: 2010-03-25

Total Pages: 464

ISBN-13: 9780470569955

DOWNLOAD EBOOK

From theory to techniques, the first all-in-one resource for EIS There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications. Explains the following fundamental approaches for developing evolving intelligent systems (EIS): the Hierarchical Prioritized Structure the Participatory Learning Paradigm the Evolving Takagi-Sugeno fuzzy systems (eTS+) the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm Emphasizes the importance and increased interest in online processing of data streams Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems Introduces an integrated approach to incremental (real-time) feature extraction and classification Proposes a study on the stability of evolving neuro-fuzzy recurrent networks Details methodologies for evolving clustering and classification Reveals different applications of EIS to address real problems in areas of: evolving inferential sensors in chemical and petrochemical industry learning and recognition in robotics Features downloadable software resources Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.


Multiple Fuzzy Classification Systems

Multiple Fuzzy Classification Systems

Author: Rafał Scherer

Publisher: Springer

Published: 2012-06-26

Total Pages: 134

ISBN-13: 3642306047

DOWNLOAD EBOOK

Fuzzy classifiers are important tools in exploratory data analysis, which is a vital set of methods used in various engineering, scientific and business applications. Fuzzy classifiers use fuzzy rules and do not require assumptions common to statistical classification. Rough set theory is useful when data sets are incomplete. It defines a formal approximation of crisp sets by providing the lower and the upper approximation of the original set. Systems based on rough sets have natural ability to work on such data and incomplete vectors do not have to be preprocessed before classification. To achieve better performance than existing machine learning systems, fuzzy classifiers and rough sets can be combined in ensembles. Such ensembles consist of a finite set of learning models, usually weak learners. The present book discusses the three aforementioned fields – fuzzy systems, rough sets and ensemble techniques. As the trained ensemble should represent a single hypothesis, a lot of attention is placed on the possibility to combine fuzzy rules from fuzzy systems being members of classification ensemble. Furthermore, an emphasis is placed on ensembles that can work on incomplete data, thanks to rough set theory. .


Analysis and Synthesis of Fuzzy Control Systems

Analysis and Synthesis of Fuzzy Control Systems

Author: Gang Feng

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 302

ISBN-13: 1420092650

DOWNLOAD EBOOK

Fuzzy logic control (FLC) has proven to be a popular control methodology for many complex systems in industry, and is often used with great success as an alternative to conventional control techniques. However, because it is fundamentally model free, conventional FLC suffers from a lack of tools for systematic stability analysis and controller design. To address this problem, many model-based fuzzy control approaches have been developed, with the fuzzy dynamic model or the Takagi and Sugeno (T–S) fuzzy model-based approaches receiving the greatest attention. Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach offers a unique reference devoted to the systematic analysis and synthesis of model-based fuzzy control systems. After giving a brief review of the varieties of FLC, including the T–S fuzzy model-based control, it fully explains the fundamental concepts of fuzzy sets, fuzzy logic, and fuzzy systems. This enables the book to be self-contained and provides a basis for later chapters, which cover: T–S fuzzy modeling and identification via nonlinear models or data Stability analysis of T–S fuzzy systems Stabilization controller synthesis as well as robust H∞ and observer and output feedback controller synthesis Robust controller synthesis of uncertain T–S fuzzy systems Time-delay T–S fuzzy systems Fuzzy model predictive control Robust fuzzy filtering Adaptive control of T–S fuzzy systems A reference for scientists and engineers in systems and control, the book also serves the needs of graduate students exploring fuzzy logic control. It readily demonstrates that conventional control technology and fuzzy logic control can be elegantly combined and further developed so that disadvantages of conventional FLC can be avoided and the horizon of conventional control technology greatly extended. Many chapters feature application simulation examples and practical numerical examples based on MATLAB®.


Advanced Research on Electronic Commerce, Web Application, and Communication

Advanced Research on Electronic Commerce, Web Application, and Communication

Author: Gang Shen

Publisher: Springer

Published: 2011-03-18

Total Pages: 480

ISBN-13: 3642203671

DOWNLOAD EBOOK

The two-volume set CCIS 143 and CCIS 144 constitutes the refereed proceedings of the International Conference on Electronic Commerce, Web Application, and Communication, ECWAC 2011, held in Guangzhou, China, in April 2011. The 148 revised full papers presented in both volumes were carefully reviewed and selected from a large number of submissions. Providing a forum for engineers, scientists, researchers in electronic commerce, Web application, and communication fields, the conference will put special focus also on aspects such as e-business, e-learning, and e-security, intelligent information applications, database and system security, image and video signal processing, pattern recognition, information science, industrial automation, process control, user/machine systems, security, integrity, and protection, as well as mobile and multimedia communications.


Handbook On Computer Learning And Intelligence (In 2 Volumes)

Handbook On Computer Learning And Intelligence (In 2 Volumes)

Author: Plamen Parvanov Angelov

Publisher: World Scientific

Published: 2022-06-29

Total Pages: 1057

ISBN-13: 9811247331

DOWNLOAD EBOOK

The Handbook on Computer Learning and Intelligence is a second edition which aims to be a one-stop-shop for the various aspects of the broad research area of computer learning and intelligence. This field of research evolved so much in the last five years that it necessitates this new edition of the earlier Handbook on Computational Intelligence.This two-volume handbook is divided into five parts. Volume 1 covers Explainable AI and Supervised Learning. Volume 2 covers three parts: Deep Learning, Intelligent Control, and Evolutionary Computation. The chapters detail the theory, methodology and applications of computer learning and intelligence, and are authored by some of the leading experts in the respective areas. The fifteen core chapters of the previous edition have been written and significantly refreshed by the same authors. Parts of the handbook have evolved to keep pace with the latest developments in computational intelligence in the areas that span across Machine Learning and Artificial Intelligence. The Handbook remains dedicated to applications and engineering-orientated aspects of these areas over abstract theories.Related Link(s)


Type-2 Fuzzy Logic

Type-2 Fuzzy Logic

Author: Rómulo Antão

Publisher: Springer

Published: 2017-07-23

Total Pages: 136

ISBN-13: 9811046336

DOWNLOAD EBOOK

This book focuses on a particular domain of Type-2 Fuzzy Logic, related to process modeling and control applications. It deepens readers’understanding of Type-2 Fuzzy Logic with regard to the following three topics: using simpler methods to train a Type-2 Takagi-Sugeno Fuzzy Model; using the principles of Type-2 Fuzzy Logic to reduce the influence of modeling uncertainties on a locally linear n-step ahead predictor; and developing model-based control algorithms according to the Generalized Predictive Control principles using Type-2 Fuzzy Sets. Throughout the book, theory is always complemented with practical applications and readers are invited to take their learning process one step farther and implement their own applications using the algorithms’ source codes (provided). As such, the book offers avaluable referenceguide for allengineers and researchers in the field ofcomputer science who are interested in intelligent systems, rule-based systems and modeling uncertainty.