An application-oriented approach to process control. The reference text systematically explains process identification, control and optimization, the three key steps needed to solve a multivariable control problem. Theory is discussed as far as it is needed to understand and solve the defined problem, while numerous examples written in MATLAB illustrate the problem-solving approach.
This book fills the gap between basic control configurations (Practical Process Control) and model predictive control (MPC). For those loops whose performance has a direct impact on plant economics or product quality, going beyond simple feedback or cascade can improve control performance, or specifically, reduce the variance about the target. However, the effort required to implement such control technology must be offset by increased economic returns from production operations. The economic aspects of the application of the various advanced control technologies are stressed throughout the book.
This text and reference offers an application-oriented approach to process control. It systematically explains process identification, control and optimization, the three key steps needed to solve a multivariable control problem. Theory is discussed as far as it is needed to understand and solve the defined problem, while numerous examples written in MATLAB illustrate the problem-solving approach.
This expanded new edition is specifically designed to meet the needs of the process industry, and closes the gap between theory and practice. Back-to-basics approach, with a focus on techniques that have an immediate practical application, and heavy maths relegated to the end of the book Written by an experienced practitioner, highly regarded by major corporations, with 25 years of teaching industry courses Supports the increasing expectations for Universities to teach more practical process control (supported by IChemE)
Intended for control system engineers working in the chemical, refining, paper, and utility industries, this book reviews the general characteristics of processes and control loops, provides an intuitive feel for feedback control behavior, and explains how to obtain the required control action witho
Based on articles from Hydrocarbon Processing magazine, this book is a collection of actual case histories, techniques and guidelines with a proven track record in the process industries. It provides practical, problem-solving advice from well-known authorities in their fields. Advanced Process Control and Information Systems for the Process Industries is an invaluable guide that provides an extensive digest of perspectives from various experts. This handy volume contains an overview of the latest developments in the field, along with the information on new technology - all contained in this one source. If you are involved in process control, instrumentation, or process and information systems, then this book is an important reference for your operations.
Practical Process Control (loop tuning and troubleshooting). This book differs from others on the market in several respects. First, the presentation is totally in the time domain (the word "LaPlace" is nowhere to be found). The focus of the book is actually troubleshooting, not tuning. If a controller is "tunable", the tuning procedure will be straightforward and uneventful. But if a loop is "untunable", difficulties will be experienced, usually early in the tuning effort. The nature of any difficulty provides valuable clues to what is rendering the loop "untunable". For example, if reducing the controller gain leads to increased oscillations, one should look for possible interaction with one or more other loops. Tuning difficulties are always symptoms of other problems; effective troubleshooting involves recognizing the clues, identifying the root cause of the problem, and making corrections. Furthermore, most loops are rendered "untunable" due to some aspect of the steady-state behavior of the process. Consequently, the book focuses more on the relationship of process control to steady-state process characteristics than to dynamic process characteristics. One prerequisite to effective troubleshooting is to "demystify" some of the characteristics of the PID control equations. One unique aspect of this book is that it explains in the time domain all aspects of the PID control equation (including as the difference between the parallel and series forms of the PID, the reset feedback form of the PID equation, reset windup protection, etc.) The book stresses an appropriate P&I (process and instrumentation) diagram as critical to successful tuning. If the P&I is not right, tuning difficulties are inevitable. Developing and analyzing P&I diagrams is a critical aspect of troubleshooting.
This book is a comprehensive introduction to the vast and important field of control systems. The text introduces the theory of automatic control and its applications to the chemical process industries with emphasis on topics that are of use to the process control engineers and specialists. It also covers the advanced control strategies and its practical implementation with an excellent balance of theoretical concepts and engineering practice.
A Real- Time Approach to Process Control provides the reader with both a theoretical and practical introduction to this increasingly important approach. Assuming no prior knowledge of the subject, this text introduces all of the applied fundamentals of process control from instrumentation to process dynamics, PID loops and tuning, to distillation, multi-loop and plant-wide control. In addition, readers come away with a working knowledge of the three most popular dynamic simulation packages. The text carefully balances theory and practice by offering readings and lecture materials along with hands-on workshops that provide a 'virtual' process on which to experiment and from which to learn modern, real time control strategy development. As well as a general updating of the book specific changes include: A new section on boiler control in the chapter on common control loops A major rewrite of the chapters on distillation column control and multiple single-loop control schemes The addition of new figures throughout the text Workshop instructions will be altered to suit the latest versions of HYSYS, ASPEN and DYNSIM simulation software A new solutions manual for the workshop problems
Fault-Tolerant Process Control focuses on the development of general, yet practical, methods for the design of advanced fault-tolerant control systems; these ensure an efficient fault detection and a timely response to enhance fault recovery, prevent faults from propagating or developing into total failures, and reduce the risk of safety hazards. To this end, methods are presented for the design of advanced fault-tolerant control systems for chemical processes which explicitly deal with actuator/controller failures and sensor faults and data losses. Specifically, the book puts forward: · A framework for detection, isolation and diagnosis of actuator and sensor faults for nonlinear systems; · Controller reconfiguration and safe-parking-based fault-handling methodologies; · Integrated-data- and model-based fault-detection and isolation and fault-tolerant control methods; · Methods for handling sensor faults and data losses; and · Methods for monitoring the performance of low-level PID loops. The methodologies proposed employ nonlinear systems analysis, Lyapunov techniques, optimization, statistical methods and hybrid systems theory and are predicated upon the idea of integrating fault-detection, local feedback control, and supervisory control. The applicability and performance of the methods are demonstrated through a number of chemical process examples. Fault-Tolerant Process Control is a valuable resource for academic researchers, industrial practitioners as well as graduate students pursuing research in this area.