Advanced Photon Counting

Advanced Photon Counting

Author: Peter Kapusta

Publisher: Springer

Published: 2015-04-23

Total Pages: 371

ISBN-13: 3319156365

DOWNLOAD EBOOK

This volume focuses on Time-Correlated Single Photon Counting (TCSPC), a powerful tool allowing luminescence lifetime measurements to be made with high temporal resolution, even on single molecules. Combining spectrum and lifetime provides a “fingerprint” for identifying such molecules in the presence of a background. Used together with confocal detection, this permits single-molecule spectroscopy and microscopy in addition to ensemble measurements, opening up an enormous range of hot life science applications such as fluorescence lifetime imaging (FLIM) and measurement of Förster Resonant Energy Transfer (FRET) for the investigation of protein folding and interaction. Several technology-related chapters present both the basics and current state-of-the-art, in particular of TCSPC electronics, photon detectors and lasers. The remaining chapters cover a broad range of applications and methodologies for experiments and data analysis, including the life sciences, defect centers in diamonds, super-resolution microscopy, and optical tomography. The chapters detailing new options arising from the combination of classic TCSPC and fluorescence lifetime with methods based on intensity fluctuation represent a particularly unique highlight.


Advanced Time-Correlated Single Photon Counting Techniques

Advanced Time-Correlated Single Photon Counting Techniques

Author: Wolfgang Becker

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 414

ISBN-13: 3540288821

DOWNLOAD EBOOK

In 1984 Desmond O’Connor and David Phillips published their comprehensive book „Time-correlated Single Photon Counting“. At that time time-correlated s- gle photon counting, or TCSPC, was used primarily to record fluorescence decay functions of dye solutions in cuvettes. From the beginning, TCSPC was an am- ingly sensitive and accurate technique with excellent time-resolution. However, acquisition times were relatively slow due to the low repetition rate of the light sources and the limited speed of the electronics of the 70s and early 80s. Moreover, TCSPC was intrinsically one-dimensional, i.e. limited to the recording of the wa- form of a periodic light signal. Even with these limitations, it was a wonderful te- nique. More than 20 years have elapsed, and electronics and laser techniques have made impressive progress. The number of transistors on a single chip has approximately doubled every 18 months, resulting in a more than 1,000-fold increase in compl- ity and speed. The repetition rate and power of pulsed light sources have increased by about the same factor.


Time-correlated single photon counting

Time-correlated single photon counting

Author: Desmond O'Connor

Publisher: Academic Press

Published: 2012-12-02

Total Pages: 299

ISBN-13: 0323141447

DOWNLOAD EBOOK

Time-correlated Single Photon Counting has been written in the hope that by relating the authors' experiences with a variety of different single photon counting systems, they may provide a useful service to users and potential users of this formidably sensitive technique. Of all the techniques available to obtain information on the rates of depopulation of excited electronic singlet states of molecular species, monitoring of fluorescence provides, in principle, the simplest and most direct measure of concentration. This volume comprises eight chapters, with the first focusing on the time dependence and applications of fluorescence. Succeeding chapters go on to discuss basic principles of the single photon counting lifetime measurement; light sources; photomultipliers; electronics; data analysis; nanosecond time-resolved emission spectroscopy; time dependence of fluorescence anisotropy. This book will be of interest to practitioners in the field of chemistry.


CMOS Circuits for Biological Sensing and Processing

CMOS Circuits for Biological Sensing and Processing

Author: Srinjoy Mitra

Publisher: Springer

Published: 2017-11-18

Total Pages: 354

ISBN-13: 3319677233

DOWNLOAD EBOOK

This book provides the most comprehensive and consistent survey of the field of IC design for Biological Sensing and Processing. The authors describe a multitude of applications that require custom CMOS IC design and highlight the techniques in analog and mixed-signal circuit design that potentially can cross boundaries and benefit the very wide community of bio-medical engineers.


VLSI-SoC: Research Trends in VLSI and Systems on Chip

VLSI-SoC: Research Trends in VLSI and Systems on Chip

Author: Giovanni De Micheli

Publisher: Springer

Published: 2010-08-23

Total Pages: 397

ISBN-13: 0387749098

DOWNLOAD EBOOK

This book contains extended and revised versions of the best papers presented during the fourteenth IFIP TC 10/WG 10.5 International Conference on Very Large Scale Integration. This conference provides a forum to exchange ideas and show industrial and academic research results in microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels.


Improving the Resolving Power of Ultraviolet to Near-Infrared Microwave Kinetic Inductance Detectors

Improving the Resolving Power of Ultraviolet to Near-Infrared Microwave Kinetic Inductance Detectors

Author: Nicholas Zobrist

Publisher: Springer Nature

Published: 2022-12-12

Total Pages: 133

ISBN-13: 3031179560

DOWNLOAD EBOOK

This thesis represents a breakthrough in our understanding of the noise processes in Microwave Kinetic Inductance Detectors (MKIDs). While the detection of ultraviolet to near-infrared light is useful for a variety of applications from dark matter searches to biological imaging and astronomy, the performance of these detectors often limits the achievable science. The author’s work explains the limits on spectral resolution broadening, and uses this knowledge to more than double the world record spectral resolution for an MKID suitable for optical and near-IR astrophysics, with emphasis on developing detectors for exoplanet detection. The techniques developed have implication for phonon control in many different devices, particularly in limiting cosmic ray-induced decoherence in superconducting qubits. In addition, this thesis is highly accessible, with a thorough, pedagogical approach that will benefit generations of students in this area.


Multi-Parametric Live Cell Microscopy of 3D Tissue Models

Multi-Parametric Live Cell Microscopy of 3D Tissue Models

Author: Ruslan I. Dmitriev

Publisher: Springer

Published: 2017-10-26

Total Pages: 172

ISBN-13: 3319673580

DOWNLOAD EBOOK

This book provides an essential overview of existing state-of-the-art quantitative imaging methodologies and protocols (intensity-based ratiometric and FLIM/ PLIM). A variety of applications are covered, including multi-parametric quantitative imaging in intestinal organoid culture, autofluorescence imaging in cancer and stem cell biology, Ca2+ imaging in neural ex vivo tissue models, as well as multi-parametric imaging of pH and viscosity in cancer biology. The current state-of-the-art of 3D tissue models and their compatibility with live cell imaging is also covered. This is an ideal book for specialists working in tissue engineering and designing novel biomaterial.


Fluorescence Lifetime Spectroscopy and Imaging

Fluorescence Lifetime Spectroscopy and Imaging

Author: Laura Marcu

Publisher: CRC Press

Published: 2014-07-17

Total Pages: 554

ISBN-13: 1439861684

DOWNLOAD EBOOK

During the past two decades, there has been an increasing appreciation of the significant value that lifetime-based techniques can add to biomedical studies and applications of fluorescence. Bringing together perspectives of different research communities, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Dia