Advanced Neural Computers

Advanced Neural Computers

Author: R. Eckmiller

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 464

ISBN-13: 1483294277

DOWNLOAD EBOOK

This book is the outcome of the International Symposium on Neural Networks for Sensory and Motor Systems (NSMS) held in March 1990 in the FRG. The NSMS symposium assembled 45 invited experts from Europe, America and Japan representing the fields of Neuroinformatics, Computer Science, Computational Neuroscience, and Neuroscience.As a rapidly-published report on the state of the art in Neural Computing it forms a reference book for future research in this highly interdisciplinary field and should prove useful in the endeavor to transfer concepts of brain function and structure to novel neural computers with adaptive, dynamical neural net topologies.A feature of the book is the completeness of the references provided. An alphabetical list of all references quoted in the papers is given, as well as a separate list of general references to help newcomers to the field. A subject index and author index also facilitate access to various details.


Advanced Methods in Neural Computing

Advanced Methods in Neural Computing

Author: Philip D. Wasserman

Publisher: Van Nostrand Reinhold Company

Published: 1993

Total Pages: 280

ISBN-13:

DOWNLOAD EBOOK

This is the engineer's guide to artificial neural networks, the advanced computing innovation which is posed to sweep into the world of business and industry. The author presents the basic principles and advanced concepts by means of high-performance paradigms which function effectively in real-world situations.


Neural Computing for Advanced Applications

Neural Computing for Advanced Applications

Author: Haijun Zhang

Publisher: Springer Nature

Published: 2020-08-12

Total Pages: 542

ISBN-13: 981157670X

DOWNLOAD EBOOK

This book presents refereed proceedings of the First International Conference on Neural Computing for Advanced Applications, NCAA 2020, held in July, 2020. Due to the COVID-19 pandemic the conference was held online. The 36 full papers and 7 short papers were thorougly reviewed and selected from a total of 113 qualified submissions. The papers present resent research on such topics as neural network theory, and cognitive sciences, machine learning, data mining, data security & privacy protection, and data-driven applications, computational intelligence, nature-inspired optimizers, and their engineering applications, cloud/edge/fog computing, the Internet of Things/Vehicles (IoT/IoV), and their system optimization, control systems, network synchronization, system integration, and industrial artificial intelligence, fuzzy logic, neuro-fuzzy systems, decision making, and their applications in management sciences, computer vision, image processing, and their industrial applications, and natural language processing, machine translation, knowledge graphs, and their applications.


Deep Learning for Computer Vision

Deep Learning for Computer Vision

Author: Rajalingappaa Shanmugamani

Publisher: Packt Publishing Ltd

Published: 2018-01-23

Total Pages: 304

ISBN-13: 1788293355

DOWNLOAD EBOOK

Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.


Advanced Methods and Deep Learning in Computer Vision

Advanced Methods and Deep Learning in Computer Vision

Author: E. R. Davies

Publisher: Academic Press

Published: 2021-11-09

Total Pages: 584

ISBN-13: 0128221496

DOWNLOAD EBOOK

Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses


Neural Networks for Pattern Recognition

Neural Networks for Pattern Recognition

Author: Christopher M. Bishop

Publisher: Oxford University Press

Published: 1995-11-23

Total Pages: 501

ISBN-13: 0198538642

DOWNLOAD EBOOK

Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.


Artificial Intelligence in the Age of Neural Networks and Brain Computing

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Author: Robert Kozma

Publisher: Academic Press

Published: 2023-10-11

Total Pages: 398

ISBN-13: 0323958168

DOWNLOAD EBOOK

Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks


Advanced Algorithms for Neural Networks

Advanced Algorithms for Neural Networks

Author: Timothy Masters

Publisher:

Published: 1995-04-17

Total Pages: 456

ISBN-13:

DOWNLOAD EBOOK

This is one of the first books to offer practical in-depth coverage of the Probabilistic Neural Network (PNN) and several other neural nets and their related algorithms critical to solving some of today's toughest real-world computing problems. Includes complete C++ source code for basic and advanced applications.


Static and Dynamic Neural Networks

Static and Dynamic Neural Networks

Author: Madan Gupta

Publisher: John Wiley & Sons

Published: 2004-04-05

Total Pages: 752

ISBN-13: 0471460923

DOWNLOAD EBOOK

Neuronale Netze haben sich in vielen Bereichen der Informatik und künstlichen Intelligenz, der Robotik, Prozeßsteuerung und Entscheidungsfindung bewährt. Um solche Netze für immer komplexere Aufgaben entwickeln zu können, benötigen Sie solide Kenntnisse der Theorie statischer und dynamischer neuronaler Netze. Aneignen können Sie sie sich mit diesem Lehrbuch! Alle theoretischen Konzepte sind in anschaulicher Weise mit praktischen Anwendungen verknüpft. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen.


Handbook of Neural Computation

Handbook of Neural Computation

Author: Pijush Samui

Publisher: Academic Press

Published: 2017-07-18

Total Pages: 660

ISBN-13: 0128113197

DOWNLOAD EBOOK

Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods