3D Printing for Energy Applications

3D Printing for Energy Applications

Author: Albert Tarancón

Publisher: John Wiley & Sons

Published: 2021-03-03

Total Pages: 400

ISBN-13: 1119560764

DOWNLOAD EBOOK

3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.


3D Printing of Concrete

3D Printing of Concrete

Author: Arnaud Perrot

Publisher: John Wiley & Sons

Published: 2019-04-30

Total Pages: 176

ISBN-13: 1786303418

DOWNLOAD EBOOK

The introduction of digital manufacturing techniques, such as 3D printing applied to concrete material, opens up new perspectives on the way in which buildings are designed. Research on this theme is thriving and there is a high rate of innovation related to concrete. At the same time, the first life-size constructions made from printed concrete are emerging from the ground. This book presents state-of-the-art knowledge on the different printing processes as well as on the concrete material that must adapt to these new manufacturing techniques, such as new hardware and new printers for concrete. The possibilities in terms of architectural design are discussed as well as the pathways that remain to be uncovered. The book also explores the challenges that researchers and companies expect to overcome as they get closer to democratizing this potential revolution that is the digital manufacturing of concrete.


Advanced Materials and Manufacturing Techniques for Biomedical Applications

Advanced Materials and Manufacturing Techniques for Biomedical Applications

Author: Arbind Prasad

Publisher: John Wiley & Sons

Published: 2024-01-04

Total Pages: 468

ISBN-13: 1394166192

DOWNLOAD EBOOK

ADVANCED MATERIALS and MANUFACTURING TECHNIQUES for BIOMEDICAL APPLICATIONS The book provides essential knowledge for the synthesis of biomedical products, development, nanomaterial properties, fabrication processes, and design techniques for different applications, as well as process design and optimization. In origin, biomaterials can come from nature or be synthesized in the laboratory with a variety of approaches that use metals, polymers, ceramic, or composite materials. They are often used or adapted for various biomedical applications. Biomaterials are commonly used in scaffolds, orthopedic, wound healing, fracture fixation, surgical sutures, artificial organ developments, pins and screws to stabilize fractures, surgical mesh, breast implants, artificial ligaments and tendons, and drug delivery systems. The sixteen chapters in Advanced Materials and Manufacturing Techniques in Biomedical Applications cover the synthesis, processing, design, manufacturing, and characterization of advanced materials; self-healing, bioinspired, nature-resourced, nanobiomaterials for biomedical applications; and manufacturing techniques such as rapid prototyping, additive manufacturing, etc. Audience The book is for engineers, technologists, and researchers working in the area of biomedical engineering and manufacturing techniques. It is also appropriate for upper-level undergraduate and graduate students.


Advanced Materials for Printed Flexible Electronics

Advanced Materials for Printed Flexible Electronics

Author: Colin Tong

Publisher: Springer Nature

Published: 2021-10-04

Total Pages: 641

ISBN-13: 3030798046

DOWNLOAD EBOOK

This book provides a comprehensive introduction to printed flexible electronics and their applications, including the basics of modern printing technologies, printable inks, performance characterization, device design, modeling, and fabrication processes. A wide range of materials used for printed flexible electronics are also covered in depth. Bridging the gap between the creation of structure and function, printed flexible electronics have been explored for manufacturing of flexible, stretchable, wearable, and conformal electronics device with conventional, 3D, and hybrid printing technologies. Advanced materials such as polymers, ceramics, nanoparticles, 2D materials, and nanocomposites have enabled a wide variety of applications, such as transparent conductive films, thin film transistors, printable solar cells, flexible energy harvesting and storage devices, electroluminescent devices, and wearable sensors. This book provides students, researchers and engineers with the information to understand the current status and future trends in printed flexible electronics, and acquire skills for selecting and using materials and additive manufacturing processes in the design of printed flexible electronics.


Advanced Materials

Advanced Materials

Author: Ajit Behera

Publisher: Springer Nature

Published: 2021-11-21

Total Pages: 762

ISBN-13: 3030803597

DOWNLOAD EBOOK

This book provides a thorough introduction to the essential topics in modern materials science. It brings together the spectrum of materials science topics, spanning inorganic and organic materials, nanomaterials, biomaterials, and alloys within a single cohesive and comprehensive resource. Synthesis and processing techniques, structural and crystallographic configurations, properties, classifications, process mechanisms, applications, and related numerical problems are discussed in each chapter. End-of-chapter summaries and problems are included to deepen and reinforce the reader's comprehension. Provides a cohesive and comprehensive reference on a wide range of materials and processes in modern materials science; Presents material in an engaging manner to encourage innovative practices and perspectives; Includes chapter summaries and problems at the end of every chapter for reinforcement of concepts.


Biosynthetic Polymers for Medical Applications

Biosynthetic Polymers for Medical Applications

Author: Laura Poole-Warren

Publisher: Elsevier

Published: 2015-11-23

Total Pages: 360

ISBN-13: 1782421130

DOWNLOAD EBOOK

Biosynthetic Polymers for Medical Applications provides the latest information on biopolymers, the polymers that have been produced from living organisms and are biodegradable in nature. These advanced materials are becoming increasingly important for medical applications due to their favorable properties, such as degradability and biocompatibility. This important book provides readers with a thorough review of the fundamentals of biosynthetic polymers and their applications. Part One covers the fundamentals of biosynthetic polymers for medical applications, while Part Two explores biosynthetic polymer coatings and surface modification. Subsequent sections discuss biosynthetic polymers for tissue engineering applications and how to conduct polymers for medical applications. - Comprehensively covers all major medical applications of biosynthetic polymers - Provides an overview of non-degradable and biodegradable biosynthetic polymers and their medical uses - Presents a specific focus on coatings and surface modifications, biosynthetic hydrogels, particulate systems for gene and drug delivery, and conjugated conducting polymers


Advanced Materials for Emerging Applications (Innovations, Improvements, Inclusion and Impact)

Advanced Materials for Emerging Applications (Innovations, Improvements, Inclusion and Impact)

Author: T. S. Srivatsan

Publisher: Bentham Science Publishers

Published: 2024-05-17

Total Pages: 607

ISBN-13: 9815196782

DOWNLOAD EBOOK

Advanced Materials for Emerging Applications is a monograph on emerging materials'; materials that have observable differences in physical properties and manufacturing requirements when compared to existing materials and industrial processes. The volume aims to showcase novel materials that can be used in advanced technology and innovative products. The editors have compiled 17 chapters grouped into 3 sections: 1) Metals and Alloys, 2) Composite materials, and 3) Other materials. Chapters 1-5 discuss recent advances in friction stir welding, suitability of nickel-base shape memory alloys, thermal cycling studies of nickel-based shape memory alloys, nitrogen additions to stainless steel, and the evolution of zirconium alloy. Chapters 6-11 cover topics such as additive manufacturing of metal matrix composites, composite materials for biomedical applications, aluminum and magnesium metal matrix composites, aluminum nanocomposites for automobile applications, enhancing the strength of aluminum-boron carbide composites, and sisal fibers reinforced composites. Lastly, chapters 13-17 explore smart hydrogels, engineered iron-oxide nanomaterials for magnetic hyperthermia, emerging sustainable material technology for fire safety, recent advances in unconventional machining of smart alloys, and critical parameters influencing high-strain rate deformation of materials. This monograph provides information for a broad readership including material and manufacturing engineers, researchers, students (at undergraduate levels or above) and entrepreneurs interested in manufacturing new products.


Fabrication and Machining of Advanced Materials and Composites

Fabrication and Machining of Advanced Materials and Composites

Author: Subhash Singh

Publisher: CRC Press

Published: 2022-10-21

Total Pages: 311

ISBN-13: 1000755851

DOWNLOAD EBOOK

This reference text discusses processing, structure, and properties of metal matrix composites, polymer matrix composites, and ceramic matrix composites for applications in high end engineering equipment, biomedical and nano-biotechnology areas. The text begins by discussing fundamentals, classification, designing and fabrication of composite materials, followed by ultrasonic vibration assisted machining of advanced materials, fabrication of transparent advanced composites, fabrication of composites via microwave sintering, and hybrid machining of metal-matrix composites. It covers important topics including fabrication of shape-memory polymers, additive manufacturing for the fabrication of composites, 3D printing processes for biomedical applications, and ultrasonic vibration assisted machining of advanced materials. The text will be useful for undergraduate, graduate students, and academic researchers in areas including materials science, mechanical engineering, manufacturing science, aerospace engineering, electronics and communication engineering The book- Covers processing, structure, and properties of metal matrix composites, polymer matrix composites, and ceramic matrix composites. Discusses nano materials and their potential applications in the area of biomedical and nano-biotechnology. Provides modern processing techniques to synthesize advance materials. Explores applicability of the materials using mechanical, chemical, thermal and electrical tests. Discussing advanced materials, their manufacturing techniques and applications in diverse areas including automotive, aerospace engineering, biomedical, this text will be useful for undergraduate, graduate students, and academic researchers in areas including materials science, mechanical engineering, manufacturing science, aerospace engineering, electronics and communication engineering. It will further discuss electro discharge machining of steels using chromium alloy-based electrodes, and advanced machining techniques for hard materials.


New Materials, Processing and Manufacturability

New Materials, Processing and Manufacturability

Author: R. Thanigaivelan

Publisher: John Wiley & Sons

Published: 2024-07-26

Total Pages: 420

ISBN-13: 1394212712

DOWNLOAD EBOOK

The book focuses on multiple areas of manufacturing, including cutting-edge material processing technologies, custom-made materials, metallic and non-metallic materials, new engineering experiments, contemporary machining, joining, surface modification, and process optimization techniques. Readers will find in this volume an extensive exploration of various advanced manufacturing and material engineering topics. It includes a detailed examination of aluminum grades and their applications, an overview of cold spray additive manufacturing, and a discussion on Gas Metal Arc Welding (GMAW) for cladding low-carbon steel plates. The volume also presents innovative approaches to brake pedal design using topology optimization, analysis of resistance-spot welding quality, and the impact of shot peening on the corrosion behavior of SiC Particle Reinforced Aluminum Composite. It highlights crucial factors in 3D printed component strength, reviews 3D milling operations with ABAQUS, and delves into the rare ferroelectric material Fresnoite. The book surveys visual sensing technologies for weld pool analysis, simulates Claus Sulfur Recovery Units with Aspen Plus, and discusses ultrasonic-assisted stir casting for metal matrix nanocomposites. It also covers the joining of dissimilar magnesium alloys, advancements in electrochemical surface coatings, unconventional machining techniques, surface coating processes using pulsed power systems, natural fiber-reinforced composite fabrication, and process parameter optimization in laser beam welding using NSGA-II. Audience The book will interest researchers in academia and industry engineers in advanced manufacturing, materials science, surface science, adhesion and coatings, production engineering, civil engineering, and welding.